Advancements in Postexposure Prophylaxis: Evaluating High-Potency Rabies-Neutralizing Monoclonal Antibodies

This technology represents a significant advancement in the field of rabies prevention, focusing on the development of highly potent rabies-neutralizing monoclonal antibodies (mAbs) for use in postexposure prophylaxis (PEP). With two mAbs, F2 and G5a, displaying exceptional neutralizing titers of 1154 and 3462 International Units (IUs) per milligram, respectively, these antibodies have the potential to offer enhanced protection against rabies when administered alongside rabies vaccines.

Peptide Mimotope Candidates for Otitis Media Vaccine

This technology describes peptide mimotopes of lipooligosaccharides (LOS) from nontypeable Haemophilus influenzae (NTHi) and Moraxella catarrhalis that are suitable for developing novel vaccines against the respective pathogens, for which there are currently no licensed vaccines. The mimotopes not only immunologically mimic LOSs from NTHi and M. catarrhalis but will also bind to antibodies specific for the respective LOS. NTHi and M. catarrhalis are common pathogens that cause otitis media in children and lower respiratory tract infections in adults.

T Cell Receptor Targeting HPV6 E2 and a Panel of Cos7 Cells Expressing Different HLA Class I Proteins for Use in Validation and Potency Studies

Summary:

The National Cancer Institute (NCI) seeks licensees for this invention comprising (1) a novel T cell receptor (TCR) specific to the E2 protein of Human papillomavirus (HPV) type 6  in the context of the human leukocyte antigen, HLA-B55, and (2) a panel of Cos7 cells expressing different HLA proteins for validation of T cell responses in immunotherapies for low-risk HPV-related diseases such as recurrent respiratory papillomatosis and anogenital condyloma.

Oxynitidine Derivatives as Tyrosyl DNA Phosphodiesterase (TDP) Inhibitors and Radiosensitizers

Summary: 

The National Cancer Institute (NCI) is actively seeking potential licensees and/or co-development research collaboration partners interested in further developing this family of oxynitidine derivatives as tyrosyl-DNA phosphodiesterase 1 (TDP1) inhibitors and radiosensitizers for the treatment of cancer.