Three-dimensional Fluorescence Polarization Excitation via Multiview Imaging

This technology includes a method that extends fluorescence polarization imaging so that the dipole moment of a fluorescent dye may be excited regardless of its 3D orientation. By exciting the dipole from multiple directions, we ensure that excitation may occur even if the dipole is unfavorably oriented along the axial (propagation) axis. If the dye can be rigidly attached to the structure of interest, our method also enables the 3D orientation of the structure to be estimated accurately.

Producing Isotropic Super-Resolution Images from Line Scanning Confocal Microscopy

This technology includes a microscopy technique that produces super-resolution images from diffraction-limited images obtained from a line scanning confocal microscope. First, the operation of the confocal microscope is modified so that images with sparse line excitation are recorded. Second, these images are processed to increase resolution in one dimension. Third, by taking a series of such super-resolved images from a given sample type, a neural network may be trained to produce images with 1D super-resolution from new diffraction-limited images.

Advancements in Postexposure Prophylaxis: Evaluating High-Potency Rabies-Neutralizing Monoclonal Antibodies

This technology represents a significant advancement in the field of rabies prevention, focusing on the development of highly potent rabies-neutralizing monoclonal antibodies (mAbs) for use in postexposure prophylaxis (PEP). With two mAbs, F2 and G5a, displaying exceptional neutralizing titers of 1154 and 3462 International Units (IUs) per milligram, respectively, these antibodies have the potential to offer enhanced protection against rabies when administered alongside rabies vaccines.

Peptide Mimotope Candidates for Otitis Media Vaccine

This technology describes peptide mimotopes of lipooligosaccharides (LOS) from nontypeable Haemophilus influenzae (NTHi) and Moraxella catarrhalis that are suitable for developing novel vaccines against the respective pathogens, for which there are currently no licensed vaccines. The mimotopes not only immunologically mimic LOSs from NTHi and M. catarrhalis but will also bind to antibodies specific for the respective LOS. NTHi and M. catarrhalis are common pathogens that cause otitis media in children and lower respiratory tract infections in adults.

Method of Detecting Circulating Cell-Free HPV 6 and 11 DNA in Patients Afflicted With Diseases Caused by Chronic HPV 6 or 11 Infection and Use Thereof

Summary:

The National Cancer Institute (NCI) and Frederick National Laboratory for Cancer Research (FNLCR) seek research co-development partners and/or licensees for commercial development of a novel liquid biopsy diagnostic for non-invasive detection of cell-free HPV 6 and 11 DNA for recurrent respiratory papillomatosis (RRP).