Vaccines for HIV

The development of an effective HIV vaccine has been an ongoing area of research. The high variability in HIV-1 virus strains has represented a major challenge in successful development.  Ideally, an effective candidate vaccine would provide protection against the majority of clades of HIV.  Two major hurdles to overcome are immunodominance and sequence diversity.  This vaccine utilizes a strategy for overcoming these two issues by identifying the conserved regions of the virus and exploiting them for use in a targeted therapy. 

Human Monoclonal Antibodies Targeting Glypican-2 in Neuroblastoma

Neuroblastoma is a rare pediatric cancer that affects one in every hundred thousand children under the age of fifteen in the United States. Current standards of care  are chemotherapy and surgery, followed by stem-cell treatments, radiation and anti-ganglioside antibody therapy, which yield an average three-year survival rate of 10-45%. This demonstrates a need for more effective therapies.

Biomarker signature development: microRNAs for biodosimetry

Alterations in microRNAs (miRNAs), a type of small non-coding RNAs, have been reported in cells/tumors subjected to radiation exposure, implying that miRNAs play an important role in cellular stress response to radiation. NCI researchers evaluated small non-coding RNAs, long non-coding RNAs (lncRNA), and mRNA, as potential non-invasive biomarkers for radiation biodosimetry. While the use of miRNAs as radiation biomarkers has been reported, the integrated use of miRNAs, mRNAs and lncRNAs to accurately determine radiation doses is novel and has not been published.

Metastatic ovarian cancer mouse models and cell lines for preclinical studies

The high mortality rate from ovarian cancers can be attributed to late-stage diagnosis and lack of effective treatment. Despite enormous effort to develop better targeted therapies, platinum-based chemotherapy still remains the standard of care for ovarian cancer patients, and resistance occurs at a high rate. One of the rate limiting factors for translation of new drug discoveries into clinical treatments has been the lack of suitable preclinical cancer models with high predictive value.

Use of Cucurbitacins and Withanolides for the Treatment of Cancer

Certain members of the cucurbitacin and Withanolide family have been identified that can sensitize some tumor cell lines to cell death (apoptosis) on subsequent exposure of the cells to pro-apoptotic receptor agonists (PARAS) of the TRAIL "death receptors". These PARAS include TRAIL itself, and agonist antibodies to two of its receptors death receptor-4 (DR4 or TRAIL-R1) and death receptor 5 (DR5, TRAIL-R2). 

Ex-vivo Production of Regulatory B-Cells for Use in Auto-immune Diseases

Regulatory B-cells (Breg) play an important role in reducing autoimmunity and reduced levels of these cells are implicated in etiology of several auto-inflammatory diseases. Despite their impact in many diseases, their physiological inducers are unknown.  Given that Bregs are a very rare B-cell, identifying factors that promote their development would allow in vivo modulation of Breg levels and ex-vivo production of large amounts of antigen-specific Bregs to use in immunotherapy for auto-inflammatory diseases.
 

Therapeutic Management of Menkes Disease and Related Copper Transport Disorders

The only currently available treatment for Menkes disease, subcutaneous copper histidinate injections, is successful only in patients with ATP7A gene mutations that do not completely corrupt ATP7A copper transport function (estimated 20-25% of affected patients) and when started at a very early age (first month of life). The combination of viral gene therapy with copper injections provides working copies of the ATP7A copper transporter into the brain, together with a source of the substrate (copper)  needed for proper brain growth and clinical neurodevelopment.