Fibroblast Cell Lines Homozygous for Glucocerebrosidase (GBA1) Mutation N370S for the Screening of Small Molecules for Gaucher Disease Treatment

This technology includes two human fibroblast cell lines be used to study the defects in GBA1 gene and protein and to screen small molecules for involvement in Gaucher disease. Glucocerebrosidase (GBA1 or GCase or beta-glucosidase) is a lysosomal enzyme, responsible for breakdown of a fatty material called glucocerebroside (or glucosyl ceramide). Deficiency or malfunction of GBA1 leads to the accumulation of insoluble glucocerebrosides in tissues, which is a major symptom of Gaucher disease. Gaucher disease is a rare and heterogeneous disorder, caused by inherited genetic mutations in GBA1.

Three-Dimensional Respiratory Epithelial Tissue Constructs With Perfusable Microvasculature

The invention provides two vascularized, multi-chip models for the alveoli and the small airway. Both models comprise a perfusable three-dimensional (3D) microvascular network consisting of human primary microvascular endothelial cells, fibroblasts, and pericytes with a differentiated lung epithelial layer exposed at the air-liquid interface (ALI) on top, built on a high-throughput, 64-chip microfluidic plate platform. The platform does not require the support of a permeable membrane and the epithelial cells are directly seeded on the perfused microvascular network.

NIMH DAO Toolbox: Data acquisition software that enables real-time sample analysis

This technology relates to a software package called NIMH DAO Toolbox that uses multithreading and a unique buffer structure to shorten gaps in sample readouts. Data acquisition devices running in continuous sampling mode collect data samples at a given sampling rate. The samples are typically stored in a memory buffer and read out at a regular interval. If the sampling rate is short enough, there can be a gap between the time the first sample is acquired and the time that sample is available to the user. This gap is typically on the order of tens of milliseconds.

A Mood-Machine-Interface as an Intervention for Emotional Self-Regulation in Real-Time

This technology relates to a closed-loop controller that is being developed as a phone app for emotional self-regulation in real-time. There is a significant association between emotion dysregulation and symptoms of depression, anxiety, eating pathology, and substance abuse, affecting millions worldwide. Consisting of a closed-loop controller that adjusts reward values in real-time according to individual mood response, the Mood Machine Interface technology compensates for adaptation to stimuli over time allowing it to generate substantial mood changes in the user.

A Neuronal Induced Pluripotent Stem Cell (iPSC) Line with CRIPSR Inhibition Gene Knockdown

This technology includes the combination of an induced pluripotent stem cell (iPSC) line that can inducibly be differentiated into neurons (using an inducible Neurogenin 2, Ngn2, cassette) and enable CRISPR inhibition gene knockdown (via stable expression of dCas9-BFP-KRAB). The combination of these elements in a cell line enables multiple lines of research, including small molecule screens for drug development in neuronal disease models, as well as studying stem cell biology in an iPSC neuronal cell model.

Transgenic Mouse Models for Studying HLA-B57:01 and HLA-B15:02 Linked Immune Responses and Hypersensitivity Reactions

Transgenic mouse models expressing human HLA-B57:01 and HLA-B15:02 molecules have emerged as invaluable tools for unraveling the intricacies of immune responses and hypersensitivity reactions. The major histocompatibility complex (MHC) encoded proteins play a pivotal role in the immune system by presenting peptide fragments to T lymphocytes, and HLA-B57:01 has been associated with severe hypersensitivity reactions triggered by abacavir, a widely used anti-retroviral drug.

Methods of Treating or Preventing Pruritis (Itch)

This technology provides a novel method of treating or preventing pruritis (itch) using natriuretic polypeptide b (Nppb) blocking agents. Itch (also known as pruritis) is a sensation that may be perceived as an unpleasant skin irritation and may drive an urge to scratch. Conditions such as, for example, psoriasis, atopic dermatitis, renal failure, liver cirrhosis and some cancers may cause persistent itch. Itch is triggered by somatosensory neurons expressing the ion channel TRPV1 (transient receptor potential cation channel subfamily V member 1).

A Novel Rapid Point-of Care Diagnostic Method for Infectious and Autoimmune Diseases

Rapid point-of-care, antibody-based testing is not available for the diagnosis of autoimmune and most infectious diseases. For detecting autoantibodies associated with most autoimmune conditions, fluid-phase immunoprecipitation assays are required. However, these assays usually involve radioactivity and are not feasible for point-of-care applications. The subject invention describes methods of using neodymium magnet for diagnosis of infectious and autoimmune diseases including lupus, Sjögren's syndrome, type I diabetes, HIV and Lyme disease.

Potential New Drugs for Treating or Preventing Pruritus

NIH scientists have identified new compositions that could potentially be used to treat or prevent pruritus (itchiness). The newly discovered compounds can block a newly identified itch pathway and might be effective for persistent itch caused by psoriasis, atopic dermatitis, renal failure, liver cirrhosis and chemotherapy. These compounds are different from commonly used antihistamines which induce drowsiness and sedation. These compounds have the potential to be used for human and animals.