Rapid Method for the Detection of Antigen-Specific Antibodies in Any Species

Currently available identification methods for antigen-specific antibodies require live pathogens, antisera (that are only available for a limited number of species), and species-specific secondary antibodies (also a limited resource). Thus, detection or surveillance of pathogens in wild avian species or zoo animals, for example, is complex and cumbersome.

Novel Method and Kit Using Monoclonal Antibodies for More Sensitive Detection of Dengue Virus

Following primary dengue virus (DENV) infection, non-structural protein 1 (NS1), a dengue-specific glycoprotein, is present in blood and is easily detected by various assays. However, for any infection thereafter (secondary infection), bioavailability of the glycoprotein greatly reduces sensitivity of DENV detection. Since secondary DENV infection is a risk factor for developing hemorrhagic fever, there is increasing need for more sensitive detection at this stage.

Recombinant Nucleic-Acid Based Flavivirus Nucleic Acids for Development of Vaccines and/or Sero-diagnostics

CDC scientists have developed recombinant flavivirus nucleic acids for the generation of broad protective immunity against flaviviruses, as well as the development of sensitive serologic diagnostic tools. Mosquito borne viral encephalitis is often caused by a flavivirus, such as Japanese encephalitis virus, dengue virus or West Nile virus. Infection by these pathogens is often lethal to both humans and animals.

Use of Detector Response Curves to Optimize Settings for Mass Spectrometry

This CDC developed optimization technology allows one to characterize the behavior of the coefficient of variation (CV) for a range of mass spectrometer machine settings. Surface-enhanced laser desorption/ionization (SELDI) and matrix-assisted laser desorption/ionization (MALDI) are used for the early detection of numerous diseases, for example cervical cancer . A critical step in the analytical process is the optimization of experiment and machine settings to ensure the best possible reproducibility of results, as measured by the CV.

Multiplexed Immunoassay for Rapid Serological Diagnosis of a Specific Viral Infection in Clinical Samples

CDC researchers have developed a multiplexed diagnostic assay for sensitive detection and distinction between viral group members based on the presence/absence of infection-generated antibodies within a clinical serum sample. For example, this assay can be used for rapid discrimination of a clinical unknown as specifically a West Nile or St. Louis encephalitis viral infection. This is particularly beneficial as these two viruses are typically difficult to distinguish by standard serological assays.

This new technique uses microsphere/microbead-based flow-analysis as a platform.

Detection and Differentiation of Pathogenic Fungi in Clinical Samples Using a Multi-Analyte Profiling System

This invention provides a rapid, sensitive and specific diagnostic tool for the detection of pathogenic fungi and subsequent species-specific discrimination. CDC scientists have developed nucleic acid probes to identify the six most medically important Candida species and endemic mycoses, and to differentiate them from other medically important fungi in a multi-analyte profiling system.

Novel Epitopes of Bacillus anthracis Lethal Factor for Development of Diagnostics and Therapeutics

CDC researchers have characterized epitopes of Bacillus anthracis Lethal Factor (LF), a critical component of the B. anthracis lethal toxin. These epitopes may allow for development of therapeutics for the treatment or prevention of B. anthracis infection. They may also allow screening for B. anthracis LF in a sample and development of a peptide anthrax vaccine.

Novel Rift Valley Fever Virus Vaccines

This invention relates to recombinant Rift Valley fever (RVF) viruses containing deletions in one or more virulence genes. The recombinant RVF viruses, generated using a plasmid-based reverse genetics system, can be used as vaccines to prevent RVF infection in livestock and humans. The recombinant RVF viruses grow to high titers, provide protective immunity following a single injection, and allow for the differentiation between vaccinated animals and animals infected with wild-type RVF virus.

Species-specific Nucleic Acid Detection Assay for Fungi

This invention pertains to nucleic acid-based assays for the detection of Aspergillus and other filamentous fungi. Assays cover the species-specific detection and diagnosis of infection by Aspergillus, Fusarium, Mucor, Penecillium, Rhizomucor, Absidia, Cunninghamella, Pseudallescheria or Sporthrix in a subject. This can reduce identification time from several days by conventional culture methods to a matter of hours.

Nucleic Acid Assays for the Detection and Discrimination of Aspergillus Fungi Species within Biological Samples

This invention relates to assays for the detection and species-specific identification of Aspergillus fungi. Accurate clinical diagnosis of Aspergillus species has become increasingly important as certain species, such as A. terreus and A. fumigatus, are resistant to specific commonly employed antifungal compounds. Most contemporary fungal diagnostic methods are time-consuming and inaccurate.