A Fold-Back Diabody Format for Diphtheria Toxin-Based Immunotoxins That Can Increase Binding and Potency

NIH inventors, in collaboration with Scott and White Memorial Hospital inventors, have developed new immunotoxins comprising a mutant diphtheria toxin linked to an anti-prostate specific membrane antigen (PSMA) fold-back diabody. The fold-back diabody construct has a shortened linker region between the heavy and light chains of the antibody variable domain. This construct allows interactions between the longer-linked variable domains while preventing interactions between the shorter-linked variable domains.

NAG-1: A Non-Steroidal Anti-Inflammatory Drug Related Gene Which Has Anti-Tumorigenic Properties

Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used in the treatment of inflammatory disease, and their anti-inflammatory effects are believed to result from their ability to inhibit the formation of prostaglandins by prostaglandin H synthase (COX). Two forms of prostaglandin H have been identified, COX-1 and COX-2. The former seems to be constitutively expressed in a variety of tissues while the high expression of the latter has been reported in colorectal tumors. NSAIDs have been shown to be effective in reducing human colorectal cancers and possibly breast and lung cancers.

Device for Selective Partitioning of Frozen Cellular Products

Cryopreservation using liquid nitrogen frozen polyvinyl bags allows for storing cellular materials for extended periods while maintaining their activity and viability. Such bags are commonly used in the clinic to store blood products including blood cells, plasma, hematopoietic stem cells, umbilical cord blood for future uses including transplantation. These materials, typically obtained in limited quantities, may be of great therapeutic value, as is the case of stem cells or cord blood derived cells which can be used to potentially treat a number of diseases.

Mouse Anti-Mouse CXCL9 (Mig) Monoclonal Antibodies

This technology describes monoclonal antibodies against mouse chemokine (C-X-C motif) ligand 9 (CXCL9), also known as Monokine induced by gamma interferon (Mig). CXCL9 is a secreted protein that functions to attract white cells and increased expression of CXCL9 has been linked to several diseases. The inventors at the NIH generated over 100 anti-mouse CXCL9 antibodies from a CLXL9/Mig knockout mouse and further characterized several antibodies to show neutralization of CXCL9.

Novel Therapeutic Compounds for Treatment of Cancer and Immune Disorders

The global market for cancer therapeutics is over $40 billion and is anticipated to continue to rise in the future. There remains a significant unmet need for therapeutics for cancers that affect blood, bone marrow, and lymph nodes and the immune system, such as leukemia, multiple myeloma, and lymphoma. The proteasome inhibitor bortezomib, which may prevent degradation of pro-apoptotic factors permitting activation of programmed cell death in neoplastic cells dependent upon suppression of pro-apoptotic pathways, has been a successful mode of treatment for such cancers.

Modulation of Leucine-rich Repeats and Calponin Homology Domain-containing Protein 4 (Lrch4) Activity for Therapeutic Applications

NIH Inventors have recently discovered a novel Leucine-rich repeat and calponin homology domain-containing protein 4 (Lrch4) in a proteomic screen of the plasma membrane of lipopolysaccharide (LPS)-exposed macrophages. Expression data by RT-PCR revealed that all Lrch family members (1-4) are expressed in macrophages, but only Lrch4 was recruited into lipid rafts (signaling microdomains of the plasma membrane) by LPS. Lrch4 is the most highly expressed Lrch family member in mouse tissues. It is a predicted single-spanning transmembrane protein that is encoded by the Lrch4 gene in humans.

NAG-1 Transgenic Mouse Model

The nonsteroidal anti-inflammatory drug-activated gene-1 (NAG-1) encodes a protein that has anti-inflammatory, proapoptotic, and antitumor properties. It plays a pivotal role in antitumorigenesis induced by chemopreventive compounds. Transgenic mice expressing human NAG-1 have been developed by the NIH investigator and collaborator.

Mouse Model and Derived Cells That Hypersecrete Leukemia Inhibitory Factor (LIF)

Embryonic stem cells (ESCs) are pluripotent cells that can be cultured indefinitely, and maintain their capability to differentiate into all cell lineages. To maintain these cells as well as various types of related induced stem cells and progenitor cells in culture, Mouse Embryonic Fibroblasts (MEFs) are routinely used as feeder cells, largely to serve as a source of Leukemia Inhibitory Factor (LIF). ESCs can also be cultured without feeders if the medium is supplemented with recombinant LIF and other factors.

mGluR5 Tumor Mouse Model

Glutamate receptor mGluR5 has been reported to function in the brain. There were no prior reports of it being involved in melanoma. The NIH investigators have discovered that when over expressed in transgenic animals, mGluR5 induces melanoma. The establishment of an mGluR5 tumor mouse model will provide a unique opportunity to help elucidate the mechanisms underlying tumor formation, and allow the study of aggressive melanoma in animals and a screen of potential therapeutics. Such an mGluR5 tumor mouse model is established at the National Institutes of Health and is available for licensing.

Biomarkers for Cancer-Related Fatigue and Their Use in the Management of Such Fatigue (CRF)

The invention relates to the diagnosis and management of cancer-related fatigue (CRF). More specifically the invention relates to identification and measurement of a single Biomarker or a group of biomarkers (e.g. genes) that are associated with cancer related fatigue. The identification and measurement of such biomarkers can be utilized in the diagnosis and management of fatigue and may facilitate the development of therapy for such fatigue.