Mouse Model and Derived Cells That Hypersecrete Leukemia Inhibitory Factor (LIF)

Embryonic stem cells (ESCs) are pluripotent cells that can be cultured indefinitely, and maintain their capability to differentiate into all cell lineages. To maintain these cells as well as various types of related induced stem cells and progenitor cells in culture, Mouse Embryonic Fibroblasts (MEFs) are routinely used as feeder cells, largely to serve as a source of Leukemia Inhibitory Factor (LIF). ESCs can also be cultured without feeders if the medium is supplemented with recombinant LIF and other factors.

mGluR5 Tumor Mouse Model

Glutamate receptor mGluR5 has been reported to function in the brain. There were no prior reports of it being involved in melanoma. The NIH investigators have discovered that when over expressed in transgenic animals, mGluR5 induces melanoma. The establishment of an mGluR5 tumor mouse model will provide a unique opportunity to help elucidate the mechanisms underlying tumor formation, and allow the study of aggressive melanoma in animals and a screen of potential therapeutics. Such an mGluR5 tumor mouse model is established at the National Institutes of Health and is available for licensing.

Biomarkers for Cancer-Related Fatigue and Their Use in the Management of Such Fatigue (CRF)

The invention relates to the diagnosis and management of cancer-related fatigue (CRF). More specifically the invention relates to identification and measurement of a single Biomarker or a group of biomarkers (e.g. genes) that are associated with cancer related fatigue. The identification and measurement of such biomarkers can be utilized in the diagnosis and management of fatigue and may facilitate the development of therapy for such fatigue.

Model Cell Lines With and Without AKT1 Mutations Derived from Proteus Syndrome Patients

The Proteus syndrome is a congenital disorder characterized by patchy overgrowth and hyperplasia (cell proliferation) of multiple tissues and organs, along with susceptibility to developing tumors. It is a rare disorder, with incidence of less than one case per million, caused by a somatic mutation. It is also a mosaic disorder, that is one in which cells of the same person have different genetic content from one another.

Transgenic Human Interleukin-21 Mouse Model

Available for licensing is a mouse model that constitutively expresses human interleukin-21 (IL-21). Traditionally, human IL-21 transgenic mouse models are difficult to produce as those with high IL-21 levels exhibit growth retardation and die before sexual maturity. The investigators generated transgenic mice that express human IL-21, which can stimulate murine cells in vitro thereby providing an accurate model to elucidate IL-21's role in immunity, immune disorders, and cancer.

Non-toxic Compounds that Inhibit the Formation and Spreading of Tumors

Available for licensing are novel pyrrolopyrimidine compounds that disrupt the assembly of the perinucleolar compartment (PNC), a sub-nuclear structure highly prevalent in metastatic tumors. These notable compounds act without overt cytotoxicity.

The presence of the PNC positively correlates with metastatic capacity, making it a potential marker for cancer development and prognosis. These compounds could also serve as useful tools to elucidate the biology driving the formation and maintenance of the PNC, and unravel its association with metastasis.

Small-Molecule Inhibitors of Human Galactokinase for the Treatment of Galactosemia and Cancers

Lactose, found in dairy products and other foods, is comprised of two simple sugars, glucose and galactose. In galactosemia, where galactose is not properly metabolized, build-up of toxic compounds, such as galactose-1-phosphate, can lead to liver disease, renal failure, cataracts, brain damage, and even death if this disorder is left untreated. Currently, the only treatment for galactosemia is elimination of lactose and galactose from the diet, but in some cases this is not sufficient to avoid long-term complications from the disorder.

Monoclonal Antibodies Targeting Human DNA Polymerase beta, a DNA Repair Enzyme

Available for licensing are monoclonal antibodies targeting human DNA polymerase beta (Pol B). Pol B is a constitutively expressed "housekeeping" enzyme that plays a role in base excision repair (BER), a cellular defense mechanism that repairs DNA base damage and loss. Aberrant Pol B expression is associated with genomic instability indicating that Pol B is required for DNA maintenance, replication and recombination.