Potent Nucleotide Inhibitors of Ecto-5'-Nucleotidase (CD73)

These small molecules are novel nucleotide derivatives, containing either a purine or pyrimidine nucleobase, that competitively block the enzyme CD73, also known as ecto-5'-nucleotidase. This enzyme converts extracellular AMP (not a potent activator of adenosine receptors) to adenosine (the native activator of 4 subtypes of adenosine receptors. CD73 inhibitors are being used, in clinical trials and preclinical research, in conjunction with cancer immunotherapy.

Reducing Bloodstream Neutrophils as a Treatment for Lung Infection and Inflammation

During lung infection, bloodstream neutrophils (PMNs) responding to infection travel to the airspace lumen. Although successful arrival of microbicidal PMNs to the airspace is essential for host defense against inhaled pathogens, excessive accumulation of PMNs in the lung contributes to the pathogenesis of several prevalent lung disorders, including acute lung injury, bronchiectasis, and COPD. Unfortunately, there is no treatment for controlling PMN accumulation in the lung.

Novel Activators of Pyruvate Kinase for the Treatment of Hemolytic Anemias

This technology includes the development and use of small molecule activators of pyruvate kinase (PK) for the treatment of inherited nonspherocytic hemolytic anemia, including PK deficiency. PK deficiency is caused by an inherited deficiency in an enzyme that reduces the lifespan of red blood cells. More than 150 unique mutations have been identified in the PK gene that lead to decreased activity in this essential enzyme in the glycolytic pathway. The prematurely lysed red blood cells can lead to jaundice, splenomegaly, and a hemolytic anemia.

Synthesis and Use of HDAC/PI3K Dual Inhibitors for the Treatment of Rare Cancers (DIRC)

This technology includes the synthesis and use of novel PI3K and HDAC dual inhibitors for the treatment of several cancers. Phosphatidylinositol 3-kinase (PI3K) is activated in many human cancers, and inhibition of these kinases is an established cancer treatment. Histone deacetylases (HDACs) are key regulators of the cell cycle that function through regulating expression of tumor suppressors (p21 and p27), c-Myc and cyclin D1. HDAC inhibition is an emerging therapeutic approach for the treatment of several cancers.

The Use of Metarrestin for the Treatment of Pancreatic Cancer

This technology includes the use of the small molecule metarrestin (ML246) for the treatment of several types of pancreatic cancer. A subcellular structure called the perinucleolar compartment (PNC) is frequently found in metastatic tumors and cancer stem cells. Reduction of PNC prevalence followed by medicinal chemistry was used to identify metarrestin as a compound that reduces PNC prevalence without significantly impacting cell viability. In vitro and in vivo animal work have demonstrated desirable pharmacokinetic properties as well as a reduction in metastatic burden and extended survival.

Small Molecule Inhibitors of the Ferroptosis Programmed Cell Death Pathway

This technology includes the identification and use of small molecules to rescue cells undergoing ferroptosis, a type of programmed cell death. These small molecules can be used as treatments in situations where epithelial cells are being damaged, including respiratory disorders, brain injury (including traumatic brain injury), renal injury, radiation-induced injury, and neurodegenerative disorders. Ferroptosis is a type of programmed cell death that is triggered by an increased presence of oxidants.

Compositions and Methods for Treating Cancers

This technology includes the combination therapy of tyrosine kinase inhibitors (TKIs) and tigecycline as a potential new treatment for acute myeloid leukemia (AML). The existing treatments available for AML are not adequate; for patients older than 60, the prognosis is poor, with a two-year survival probability of less than 10%. Tigecycline is a glycylcycline antibiotic that induces cell death via inhibition of mitochondrial protein synthesis.

Process for Synthesis of VBP15 as a Treatment for Duchenne Muscular Dystrophy

This technology includes processes for the synthesis of VBP15 (17a,21-dihydroxy-16a-methyl-pregna-1,4,9(11)-triene-3,20-dione) of high purity and large quantities as a treatment for Duchenne muscular dystrophy. The synthesis of VBP15 has several deficiencies which has hindered larger-scale preparation for clinical evaluation and potential manufacturing. The deficiencies included formation of significant levels of undesired epoxide impurity, formation of undesired ketone impurity, and resultant need for costly chromatographic purification.

Use of Repurposed Drugs and Combinations of Proteasome Inhibitors and Topoisomerase Inhibitors for the Treatment of Chordoma

This technology includes a group of 20 drugs that can be further developed as a treatment for chordoma. Chordoma is a rare, slow-growing malignant tumor arising from remnants of the fetal notochord, with a high recurrence rate and no effective chemotherapy agents. These 20 drugs inhibited chordoma cell growth, with potencies ranging from 10 to 370 nM in the chordoma cell line UCH1 cells. These agents also had significant inhibitory effects on chordoma patient cells, C24, C25, and C32.

Methods and Compositions for the Inhibition of PIN1 for the Treatment of Immune, Proliferative and Neurodegenerative Disorders

This technology includes the compositions and methods for inhibiting PIN1 for the treatment of disorders characterized by elevated PIN1 levels (e.g., immune disorders, proliferative disorders, and neurodegenerative disorders) with small molecules. Pin1 dysregulation has been associated with a number of pathological conditions. In particular, PIN1 has been shown to promote oncogenesis by modulating several oncogenic signaling pathways and its overexpression has been shown to correlate with poor clinical outcome.