Antagonist of A3 Adenosine Receptor Fluorescent Probes for the Study of Diseases that Involve A3 Signaling

This molecular probe may serve as a companion tool to identify and stratify patient populations based on the prevalence of the target A3 adenosine receptors.

Small molecule drugs, A3AR-selective agonists, are currently in advanced clinical trials for the treatment of hepatocellular carcinoma, autoimmune inflammatory diseases, such as rheumatoid arthritis, psoriasis, and dry eye disease, and other conditions.

Rabbit Polyclonal Antibody to Detect a Pro-peptide Fragment of NSAID-activated Gene (NAG-1)/GDF15, a Protein Associated with Cancer

Chronic inflammation is clearly associated with an increase in the risk of cancer. Non-steroidal anti-inflammatory drugs (NSAIDs) are well documented as agents that inhibit tumor growth and with long-term use can prevent tumor development. NSAID-activated gene (NAG-1), a unique member of the TGF-beta superfamily, is highly induced by NSAIDs and numerous drugs and chemicals with anti-tumorigenic activities.

Antagonists of Hyaluronan Signaling for Treatment of Airway Diseases

Airway diseases, such as Asthma and Chronic Obstructive Pulmonary Disease (COPD), constitute a major health burden worldwide. It is estimated, for example, that nearly 15.0% of the adult population in the US are affected with such diseases, and the economic cost burden is over $23 billion annually. Unfortunately, the current options for treatment of such diseases are quite limited, consisting only of bronchodilators and inhaled steroids. The need for a novel and more effective class of therapeutics agents is imperative.

Highly Potent and Selective Deubiquitinating Enzyme Inhibitor

Available for licensing are inhibitors that target the USP1/ UAF1 deubiquitinating enzyme (DUB) complex. The FDA approval and commercial success of Velcade®, a small molecule proteasome inhibitor, has established the ubiquitin-proteasome system (UPS) as a valid target for anticancer treatment. However, proteasome inhibitors in general suffer from a narrow therapeutic index and acquired resistance. A promising alternative to proteasome inhibition has been to target the enzymes upstream of proteasome-mediated protein degradation, i.e.

Engineered Anthrax Toxin Variants that Target Cancer

This technology describes the use of novel mutated anthrax protective antigen (PA) protein variants to target tumor cells and tumor vasculature. NIH scientists have engineered two PA variants that selectively complement one another and combine to form active octamers that target tumor cells. This controlled oligomeric activation of the PA proteins makes the likelihood of toxicity to non-tumor cells very low since non-tumor tissue does not express certain cell-surface proteases required to activate the PA variants.

Human and Veterinary Cancer Therapeutic Agent Utilizing Anthrax Toxin-Based Technology

Due to the disorganized nature of blood vessels that run through tumors, chemotherapeutic agents often fail to penetrate tumors and kill cancer cells at the tumor’s center. This can lead to ineffective chemotherapeutic treatments, because tumors can quickly grow back if the entire tumor is not destroyed. NIH researchers have developed a therapeutic agent that solves this problem facing current chemotherapy treatments.

Signatures of Genetic Control in Digestive and Liver Disorders

Our technology describes unique genetic signatures in patients with digestive diseases and liver disorders. Using comprehensive analysis of 735 microRNAs and 19,000 mRNAs, we have identified a unique set of microRNAs and/or mRNAs which predict disease phenotypes in patients with digestive and liver disorders. The identification of such point-of- care genetic signatures is significant for both personalized biomarkers and novel targeted biotherapeutics. These microRNAs and mRNAs function either together or separately thus modulating protein expressions in one or more signaling pathways.

Intranasal Nebulizer with Disposable Drug Cartridge for Improved Delivery of Vaccines and Therapeutics

Intranasal delivery is a simple, inexpensive and needle-free route for administration of vaccines and therapeutics. This intranasal delivery technology, developed with Creare LLC., includes low-cost, disposable drug cartridges (DDCs) that mate with a durable hand-held device. The rechargeable-battery-powered device transmits ultrasonic energy to the DDC to aerosolize the drug and is capable of performing for eight hours at 120 vaccinations per hour. Potential applications for this platform technology include intranasal vaccination (e.g.

Controlled Expression and Assembly of Human Group-C Rotavirus-like Particles for Creation of Rotavirus Diagnostic Assays and Improved Vaccine Formulations

CDC researchers have developed methods of producing unlimited quantities of Group-C (GpC) rotavirus antigens. GpC rotaviruses are a major, worldwide cause of acute gastroenteritis in children and adults that is distinct from Group-A rotavirus. However, GpC rotaviruses cannot be grown in culture, resulting in a lack of tools for detection and treatment of GpC rotavirus disease.

Respiratory Syncytial Virus Immunogens for Vaccine and Therapeutics Development

CDC researchers have developed specific Respiratory Syncytial Virus (RSV) immunogens for use in the development of RSV-directed vaccines and therapeutics. RSV is the most common cause of serious respiratory disease in infants and young children and an important cause of disease in the elderly. To date, efforts to make a mutually safe and effective vaccine have been largely unsuccessful.