Evans Blue Modified Small Molecule-based Prostate-specific Membrane Antigen (PSMA) Radiotherapy and Nuclear Imaging

This technology includes anti-PSMA antibody labeled with 177Lu, which has shown to be an effective treatment for prostate cancer. Several small molecules targeting PSMA were also evaluated in prostate cancer patients labeled with betta emitters such as 177Lu. The most common one is 177Lu-PSMA-617 which is under clinical evaluation in many countries. Usual treatment in patients in most clinical trials was composed of up to 3 cycles of 177Lu-PSMA-617.

Intralipid as a Contrast Agent to Enhance Subsurface Blood Flow Imaging

This technology includes a blood flow imaging method that allows for a higher density of smaller particles to be detected. Current imaging methods that are based on Doppler measurements are limited by the discontinuity in the capillary flow in the space between red blood cells. The core technology is to use a scattering agent to enhance capillary flow or microcirculation. This technology has been tested for optical coherence Doppler tomography, but can be expended to any Doppler based flow imaging techniques such as laser speckle imaging.

Radiotherapy and Imaging Agent-based on Peptide Conjugated to Novel Evans Blue Derivatives with Long Half-life and High Accumulation in Target Tissue

This technology includes a newly designed, truncated Evans Blue (EB) form which allows labeling with metal isotopes for nuclear imaging and radiotherapy. Unlike previous designs, this new form of truncated EB confers site specific mono-labeling of desired molecules. The newly designed truncated EB form can be conjugated to various molecules including small molecules, peptides, proteins and aptamers to improve blood half-life and tumor uptake, and confer better imaging, therapy and radiotherapy.

A Novel Therapy/Companion Diagnostic (BAM15 And mtDNA) for Sepsis and Sepsis-induced Acute Kidney Injury

This technology includes a therapy and companion diagnostic which can be used for the early diagnosis and treatment of sepsis and sepsis-induced acute kidney injury (AKI). Mitochondrial damage plays a key role in sepsis-induced acute kidney injury BAM15 [2-ftuorophenyl){6-[(2- fluorophenyl)am ino]{1 ,2,5-oxadiazolo[3,4-e]pyrazin-5-yl)}amine] is a mitochondrial uncoupler that protects mitochondria with more specificity and less cytotoxicity than other uncouplers. Mitochondrial DNA (mtDNA) is a damage associated molecular pattern that is increased in human sepsis.

Concurrent Use of Atorvastatin During Chemotherapy Reduces Cisplatin-induced Ototoxicity

This technology includes the use of atorvastatin, a medication to manage hypercholesterolemia, as a method to protect patients receiving cisplatin from hearing loss. Cisplatin chemotherapy is indicated in various cancer types in adults and children and is known to cause hearing loss. A patient on atorvastatin during chemotherapy is 46% less likely to acquire a significant cisplatin-induced hearing loss relative to a non-statin user. Atorvastatin is an FDA-approved medication routinely prescribed and well-tolerated clinically.

Functions and Targets of Therapeutic MicroRNAs to Treat and Diagnose Cancer

This technology includes a method to identify potentially therapeutic microRNAs in cancer, particularly squamous cell carcinoma of the head and neck (HNSCC). This approach first utilizes a large and publicly available expression dataset, which is then validated by a smaller independent dataset to determine deregulated microRNAs expression. These results are then intersected with in vitro functional anti-proliferative screening data to select for microRNAs that play a functional tumor suppressive role and likely serve as therapeutic targets.

Selective A3 Adenosine Receptor Agonists for the Treatment of Chronic Neuropathic Pain and Other Conditions

This technology includes the creation and use of A3 adenosine receptor (A3AR)-selective agonists for treating chemotherapy-induced peripheral neuropathy, chronic neuropathic pain, rheumatoid arthritis, psoriasis, and other conditions. A3 receptors for adenosine are found in most cells and endogenous activation of the A3 receptors can result in apoptosis, thereby relieving the inflammation or targeting a tumor. A3AR agonists have been a promising strategy for the treatment of various diseases.

Selections of Genes

The invention provides selections of genes expressed in a cancer cell that function to characterize such cancer, and methods of using the same for diagnosis and for targeting the therapy of selected cancers. In particular, methods are provided to classify cancers belonging to distinct diagnostic categories, which often present diagnostic dilemmas in clinical practice, such as the small round blue cell tumors (SRBCTs) of childhood, including neuroblastoma (NB), rhabdomyosarcoma RMS), Burkitt’s lymphoma (BL), and the Ewing family of tumors (EWS).

Chromatin Insulator Protecting Expressed Genes of Interest for Human Gene Therapy or Other Mammalian Transgenic Systems

The technology provides the isolation of a functional DNA sequence comprising a chromatin insulating element from a vertebrate system and provides the first employment of the pure insulator element as a functional insulator in mammalian cells. The technology further relates to a method for insulating the expression of a gene from the activity of cis-acting regulatory sequences in eukaryotic chromatin.