Mouse Lacking the Chemokine Receptor CX3CR1

This mouse has been generated by targeted gene disruption. The mouse provides a model to investigate the function of the chemokine receptor CX3CR1, which is a proinflammatory receptor for the leukocyte chemoattractant CX3CL1 (aka fractalkine). As an example, the mouse is in use in the study of atherosclerosis. Further, the mouse may serve as a model study the role of the immune system during infection with pathogens as well as other immunologically mediated diseases and responses to tumors.

Brother of the Regulator of Imprinted Sites (BORIS)

The subject application discloses an isolated or purified nucleic acid molecule consisting essentially of a nucleotide sequence encoding a human or a non-human BORIS, or a fragment of either of the foregoing; an isolated or purified nucleic acid molecule consisting essentially of a nucleotide sequence that is complementary to a nucleotide sequence encoding a human or a non-human BORIS, or a fragment of either of the following; a vector comprising such an isolated or purified polypeptide molecule consisting essentially of an amino acid sequence encoding a human or a non-human BORIS, or a fragme

Activation of Recombinant Diphtheria Toxin Fusion Proteins by Specific Proteases Highly Expressed on the Surface of Tumor Cells

This invention relates to diphtheria toxin fusion proteins comprising a diphtheria toxin (DT) cell-killing component and a cell-binding component such as granulocyte macrophage colony-stimulating factor (GM-CSF), interleukin 2 (IL-2), or epidermal growth factor (EGF). Receptors for the latter three materials are present on many types of cancer cells; therefore, these fusion proteins bind preferentially to these cancer cells. A key feature is that these toxins are altered so as to require activation by a cell-surface protease that is overexpressed on many types of cancers.

Laminin A Peptides

This invention relates to peptides and derivatives thereof having laminin-like activity, as well as a pharmaceutical composition of the peptide. The peptides claimed include Serine-Isoleucine-Lysine-Valine-Alanine-Valine (SIKVAV). Methods for promoting increased adhesion and migration of epithelial cells is also disclosed. The peptides have wide usage in research, nerve regeneration and cancer treatment. For example, this invention may be useful as an adhesion and regeneration agent for nerve guides and as an adhesion agent for vascular prosthesis.

Multimeric Protein Toxins to Target Cells Having Multiple Identifying Characteristics

This technology relates to multimeric bacterial protein toxins which can be used to specifically target cells. Specifically, this is a modified recombinant anthrax toxin protective antigen (PrAg) that has been modified in several ways. First, the PrAg can be activated both by a metalloproteinase (MMP) and by urokinase plasminogen activator (uPA). Second, the native PrAg lethal factor (LF) binding site has been modified so that only a modified PrAg comprising two different monomers can bind anthrax LF.

Small Molecule Inhibitors of Clk and Dyrk Kinases for Potential Therapeutic Intervention of Down Syndrome, Alzheimer's Disease and Cancer

This technology includes small molecule inhibitors of the cdc2-like kinase (Clk) and Dyrk kinase which can restore splicing outcomes within many dysregulated splicing events potentially reversing phenotypes associated with diseases associated with abnormal splicing. The Clks regulate the alternative splicing of microtubule-associated protein tau and are implicated in frontotemporal dementia and Parkinson's disease through the phosphorylation of splicing factors (SF).

Application of AAV44.9 Vector in Gene Therapy for the Inner Ear

This technology includes a novel AAV isolate (AAV44.9) to be used as gene therapy for the inner ear for the treatment of deafness. The ability of AAV vectors to transduce dividing and non-dividing cells, establish long-term transgene expression, and the lack of pathogenicity has made them attractive for use in gene therapy applications. Vectors based on new AAV isolates may have different host range and different immunological properties, thus allowing for more efficient transduction in certain cell types.

mTOR Inhibition for the Prevention of Epithelial Stem Cell Loss and Mucositis

The integrity of the epidermis and mucosal epithelia is highly dependent on self-renewing stem cells and, therefore, is vulnerable to physical and chemical damage from common cancer treatments, such as radiation or chemotherapy. Consequently, many cancer patients undergoing these treatments develop mucositis, a debilitating condition involving painful and deep mucosal ulcerations. Since current prevention and treatment options for mucositis are limited, providing only minor relief and no protection to stem cells, novel therapies are needed.

Modified AAV5 Vectors for Enhanced Transduction and Reduced Antibody Neutralization

Scientists at the NIH disclosed a mutated adeno-associated virus (AAV) serotype 5 by modifying sialic acid binding regions which mediate viral entry into host cells. Preliminary results from animal studies suggest that this modification can increase transduction by 3-4 folds in salivary glands and muscles, and can significantly decrease the potential of being neutralized by preexisting antibodies compared to the wild type AAV. Thus, the modified AAV5 vectors seem to be optimal for gene therapy.