Innovative Antibody Conjugates for Targeted Therapy

This advanced technology introduces innovative antibody conjugates that redefine the possibilities of targeted therapy. By coupling therapeutic agents to engineered antibodies with highly specific binding sites, these conjugates deliver treatments directly to diseased cells while sparing healthy tissues. The result is a powerful increase in treatment efficacy, accompanied by a meaningful reduction in side effects.

Innovative Antibody Conjugation Technology for Therapeutic and Diagnostic Applications

This pioneering technology introduces a novel method for conjugating antibodies, designed to dramatically enhance their therapeutic and diagnostic performance. By improving both binding efficiency and target specificity, this approach overcomes critical limitations of existing antibody-based therapies and imaging tools.

Humanized Monoclonal Antibodies Specific Against Human Soluble Tissue Factor (hsTF) as Diagnosis, Prevention and Therapeutic Agents for Thrombosis

Summary:

The National Cancer Institute (NCI) seeks research co-development partners and/or licensees for a novel humanized monoclonal antibody (58B3) that selectively targets a newly identified soluble Tissue Factor (sTF) to diagnose, prevent and treat pathological thrombosis associated with inflammation, viral/bacterial infection, sepsis and cancer – without affecting normal hemostasis.

Novel Human Immunogenic Epitopes of the Human Endogenous Retrovirus ERVMER34-1

Summary:

The National Cancer Institute (NCI) seeks research co-development partners and/or licensees for the clinical translation of novel peptide-based therapeutic cancer vaccines derived from ERVMER34-1, a human endogenous retrovirus (HERV) antigen, offering a unique opportunity to address a significant unmet need in the treatment of various carcinomas.

Identification and Characterization of HLA-A24 Agonist Epitopes of MUC1 Oncoprotein

Summary:

The National Cancer Institute (NCI) seeks co-development partners and licensees for a human cytotoxic T lymphocyte agonist epitope from the C-terminal subunit of mucin 1 (MUC1-C), which can be used as a peptide, polypeptide (protein), in a cancer vaccine or T-cell targeted therapy to target many tumor types.

Oxynitidine Derivatives Useful as Inhibitors of Topoisomerase IB (TOP1) and Tyrosyl-DNA Phosphodiesterase 1 (TDP1) for Treating Cancer

Summary: 

The National Cancer Institute (NCI) is actively seeking potential licensees and/or co-development research collaboration partners interested in advancing oxynitidine derivatives as novel inhibitors of topoisomerase IB (TOP1) and tyrosyl-DNA phosphodiesterase 1 (TDP1) for cancer treatment. These TOPI and TDP1 inhibitors, when administered together, demonstrate enhanced anti-tumor efficacy.

Description of Technology: 

Methods of Detecting Loss of Heterozygosity and Damaging Mutations in Immune-Related Genes Using Liquid Biopsies

Summary: 
The National Cancer Institute (NCI) seeks co-development partners and/or licensees for a liquid biopsy diagnostic assay capable of detecting loss of heterozygosity (LOH) and somatic mutations in genes important for antigen processing and presentation and interferon-γ response pathways.