T-cell Receptor Targeting Human Papillomavirus-16 E7 Oncoprotein

Human papillomavirus (HPV) is a group of human viruses known to cause various malignancies. Of the group, HPV-16 is the most prevalent strain – an estimated 90% of adults have been exposed. HPV-16 is also the strain most commonly associated with malignancy, causing the vast majority of cervical, anal, vaginal, vulvar, and penile cancers. Currently, HPV-positive malignancies non-responsive to surgery or radiation are incurable and poorly palliated by existing systemic therapies. Thus, an alternative therapeutic approach for HPV-positive malignancies is needed. 

3-o-sulfo-galactosylceramide Analogs as Activators of Type II Natural Killer T (NKT) Cells to Reduce Cancer Metastasis to the Lung

Lung metastases are a sign of widespread cancer with poor survival rate. Lung malignancies can originate from almost any cancer type spread via the blood stream. Most common lung metastases are from melanoma, breast cancer, bladder cancer, colon cancer, prostate cancer, neuroblastoma, and sarcoma. Living more than 5 years with lung metastases is uncommon, and surgical procedures are only effective with localized lung metastases. Lung metastasis are extremely frequent and resistant to regular treatment due to immunosuppressive regulatory sulfatide-reactive type II NKT cells.

Antisense Oligonucleotides against Cancer Cell Migration and Invasion

Advanced stage cancers are typically marked by metastases of the primary cancer to secondary sites such as lungs, liver, and bones. Such metastatic cancers result in strikingly low 5-year survival rates, underscoring the need for novel therapeutics. For example, bone metastasis of primary breast cancer has a 5-year survival rate of 13%, lung cancer only 1%. There is a need for targeted therapy options specific to metastases. One approach to targeting metastases is to reduce cancer cell migration and invasion.

Natural product-based anti-cancer agents: aza-Englerin analogues

Chemotherapy resistance in a wide array of cancers is often associated with enhanced glucose uptake and dysregulation of the insulin signaling pathway.  Therapeutics capable of inhibiting insulin signaling would be valuable as a stand-alone treatment and for sensitizing resistant tumors to standard chemotherapy regiments.  Researchers at NCI’s Genitourinary Malignancies Branch have synthesized and developed a series of Englerin-A ana

A Novel Genetically Encoded Inhibitor of Hippo Signaling Pathway to Study YAP1/TAZ-TEAD Dependent Events in Cancer

The Hippo signaling pathway regulates a multitude of biological processes including cell proliferation, apoptosis, differentiation, tissue homeostasis, and stem cell functions. This axis has been recently listed as one of the top 10 signaling pathways altered in human cancer. Its role in modulating cell growth and proliferation is mediated by the activation of Yes-associated protein 1 (YAP1) and transcriptional co-activator with PDZ-binding domain (TAZ).

Mice, Organs, and Mouse Alleles Carrying Germline and Conditional Deletions of the Zbtb7b Gene

The Zbtb7b gene encodes the zinc finger transcription factor ThPOK (also known as cKrox) that promotes CD4 lineage differentiation in immature T cells. CD4+ T cells, also known as “helper” T cells, are critical for long-term immunity against pathogens as well as for promoting CD8+ “effector” T cell and effective B cell responses. ThPOK is needed for the development and functional fitness of CD4+ T cells as well as multiple aspects of the immune response to infection. As such, ThPOK offers a potential target for immune regulation.

T-Cell Immunotherapy that Targets Aggressive Epithelial Tumors

Metastatic cancers cause up to 90% of cancer deaths, yet few treatment options exist for patients with metastatic disease. Adoptive transfer of T cells that express tumor-reactive T-cell receptors (TCRs) has been shown to mediate regression of metastatic cancers in some patients. Unfortunately, identification of antigens expressed solely by cancer cells and not normal tissues has been a major challenge for the development of T-cell based immunotherapies. Thus, it is essential to find novel target antigens differentially expressed in cancer versus normal tissues.

A New Molecular Scaffold for Targeting hRpn13 as a Treatment for Cancer

This technology includes a new chemical scaffold (with lead compound XL5) against hRpn13 that induces apoptosis, which may have clinical efficacy against cancer. The structure of XL5-conjugated hRpn13 guided the design of XL5-PROTAC degrader compounds that exhibit greater efficacy than previous hRpn13-targeting compounds, as evaluated by selectivity for hRpn13, induction of apoptosis, and loss of cell viability. In cells, XL5-PROTACs revealed the presence of a truncated hRpn13 product that binds to proteasomes and is selectively degraded by XL5-PROTACs.

Isotopes of Alpha Ketoglutarate and Related Compounds for Hyperpolarized MRI Imaging

This technology includes 1-13C-ketoglutarate which can be used for imaging the conversion to hydroxyglutarate (HG) or Gln in cancer cells with an IDH1 mutations by hyperpolarized MRI. The ability to detect the status of IDH1 mutations is clinically prognostic for multiple cancers. These exciting observations are limited by two factors, the major one being that the natural abundance of 13C at position C5 overlaps with 1-13C-2-hydroxyglutarate peak, which limits the sensitivity of analysis and prevents simultaneous observations of HG and Gln formation.

LZK and DLK Inhibitors to Target LZK and Suppress MYC Expression, Inhibit AKT Activation, and Promote Cancer Cell Death and Tumor Regression

This technology includes the use of LZK and DLK inhibitors to be used for the treatment of head and neck squamous cell carcinoma (HNSCC) or lung squamous cell carcinoma (LSCC). Specifically, we demonstrate that inhibitors that can be repurposed to target LZK suppresses LZK kinase-dependent stabilization of MYC and activation of the PI3K/AKT pathway. In vivo preclinical cell line xenograft mouse model demonstrates that targeting LZK will suppress tumor growth. We also demonstrate that several additional compounds potently inhibit LZK and could serve as new therapeutic modalities.