Isotopes of Alpha Ketoglutarate and Related Compounds for Hyperpolarized MRI Imaging

This technology includes 1-13C-ketoglutarate which can be used for imaging the conversion to hydroxyglutarate (HG) or Gln in cancer cells with an IDH1 mutations by hyperpolarized MRI. The ability to detect the status of IDH1 mutations is clinically prognostic for multiple cancers. These exciting observations are limited by two factors, the major one being that the natural abundance of 13C at position C5 overlaps with 1-13C-2-hydroxyglutarate peak, which limits the sensitivity of analysis and prevents simultaneous observations of HG and Gln formation.

LZK and DLK Inhibitors to Target LZK and Suppress MYC Expression, Inhibit AKT Activation, and Promote Cancer Cell Death and Tumor Regression

This technology includes the use of LZK and DLK inhibitors to be used for the treatment of head and neck squamous cell carcinoma (HNSCC) or lung squamous cell carcinoma (LSCC). Specifically, we demonstrate that inhibitors that can be repurposed to target LZK suppresses LZK kinase-dependent stabilization of MYC and activation of the PI3K/AKT pathway. In vivo preclinical cell line xenograft mouse model demonstrates that targeting LZK will suppress tumor growth. We also demonstrate that several additional compounds potently inhibit LZK and could serve as new therapeutic modalities.

Enhancing Activity of Bispecific Antibodies in Combination with Ibrutinib for the Treatment of Cancer

This technology includes the combination of a kinase inhibitor (specifically ibrutinib) with a bispecific antibody (specifically a CD19/CD3 bispecific antibody) to be used to treat cancer. CD19/CD3 bispecific antibodies (bsAbs) can be used to recruit endogenous T cells against CD19+ tumor cells via the formation of cytolytic synapses. lbrutinib, a BTK inhibitor, has been shown to normalize T cell dysfunction characteristic of CLL.

Evans Blue Modified Small Molecule-based Prostate-specific Membrane Antigen (PSMA) Radiotherapy and Nuclear Imaging

This technology includes anti-PSMA antibody labeled with 177Lu, which has shown to be an effective treatment for prostate cancer. Several small molecules targeting PSMA were also evaluated in prostate cancer patients labeled with betta emitters such as 177Lu. The most common one is 177Lu-PSMA-617 which is under clinical evaluation in many countries. Usual treatment in patients in most clinical trials was composed of up to 3 cycles of 177Lu-PSMA-617.

Radiotherapy and Imaging Agent-based on Peptide Conjugated to Novel Evans Blue Derivatives with Long Half-life and High Accumulation in Target Tissue

This technology includes a newly designed, truncated Evans Blue (EB) form which allows labeling with metal isotopes for nuclear imaging and radiotherapy. Unlike previous designs, this new form of truncated EB confers site specific mono-labeling of desired molecules. The newly designed truncated EB form can be conjugated to various molecules including small molecules, peptides, proteins and aptamers to improve blood half-life and tumor uptake, and confer better imaging, therapy and radiotherapy.

GATA-3 Reporter Plasmids for Revealing Underlying Mechanisms in Breast Cancer

GATA-3 is a transcription factor that is highly expressed in normal cells of the mammary luminal epithelium. GATA-3 plays a regulatory role in determining the fate of cells in the mammary gland. Disruption of GATA-3 expression leads to defects in the development of mammary cells, including an inability to differentiate properly into the correct cell type. GATA-3 function is also disrupted in various breast cancer models indicating that GATA-3 has tumor suppressive properties in normal cells.

Human Synovial Sarcoma Cell Line A2243

Synovial sarcoma is a cancer affecting mesenchymal cells in connective tissues. This rare cancer is typically linked to genetic abnormalities or exposure to radiation. Metastatic growth throughout the body can occur primarily through blood circulation. More than 90% of synovial sarcomas show a characteristic t(X;18)(p11;q11) translocation involving the SYT and SSX genes. The resulting SYT-SSX abnormal fusion protein causes misregulation of downstream gene expression, leading to tumor formation.