Mouse Monoclonal Antibodies to MAD1, a Human Spindle Assembly Checkpoint Protein for Maintaining Chromosomal Segregation

Scientists at the National Institutes of Health have developed mouse monoclonal antibodies against the human spindle assembly checkpoint protein, MAD1. The spindle assembly checkpoint in mitotic cell division regulates the fidelity of chromosome segregation during cell division. MAD1 is an important component of this checkpoint control, which if compromised, can lead to the initiation of cancer cell growth. These monoclonal antibodies are the first available antibodies against MAD1 and can be used in laboratory research and diagnostics.

Small Molecule Activators of Human Pyruvate Kinase for Treatment of Cancer and Enzyme-Deficient Hemolytic Anemia

NIH investigators have discovered a series of small compounds with the potential to treat a variety of cancers as well as hemolytic anemia. Contrary to most cancer medications, these molecules can be non-toxic to normal cells because they target a protein specific to the metabolic pathways in tumors, thus representing a significant clinical advantage over less-specific chemotherapeutics.

Methods for Treating or Ameliorating Fibrosis by Inhibiting the Interaction between IL-21 Receptor (IL-21R) and IL-21

This invention includes methods for treating or ameliorating fibrosis by inhibiting the interaction between IL-21 Receptor (IL-21R) and IL-21 using either anti-IL-21R monoclonal antibodies (or binding fragments of anti-IL-21R mAbs), anti-IL-21 monoclonal antibodies (or binding fragments of anti-IL-21 mAbs) or soluble IL-21R (or binding fragments of IL-21R). It is believed that the TH2 immune response, induced by IL-21, plays a major role in the in the pathogenesis of tissue fibrosis.

Pyruvate Kinase M2 Activators for the Treatment of Cancer

NIH investigators have discovered a series of small compounds with the potential to treat a variety of cancers as well as hemolytic anemia. Contrary to most cancer medications, these molecules can be non-toxic to normal cells because they target a protein specific to the metabolic pathways in tumors, thus representing a significant clinical advantage over less-specific chemotherapeutics.

Intranasal Nebulizer with Disposable Drug Cartridge for Improved Delivery of Vaccines and Therapeutics

Intranasal delivery is a simple, inexpensive and needle-free route for administration of vaccines and therapeutics. This intranasal delivery technology, developed with Creare LLC., includes low-cost, disposable drug cartridges (DDCs) that mate with a durable hand-held device. The rechargeable-battery-powered device transmits ultrasonic energy to the DDC to aerosolize the drug and is capable of performing for eight hours at 120 vaccinations per hour. Potential applications for this platform technology include intranasal vaccination (e.g.

Method for Finding Usable Portion of Sigmoid Curve (the Taylor Method), Improved Assay Readouts, and Enhanced Quality Control/Assurance

CDC researchers have developed algorithmic methods for determining sigmoid curve optimums and calculating component concentrations. Sigmoid curves are commonly generated in bioassays and used to calculate results. Various techniques have been used to define the curve, analyze the observations, and calculate a concentration. This technology is an algorithmic approach to identifying the usable portion of a sigmoid curve.

Multi-Antigenic Peptide(s) Vaccine and Immunogen for Conferring Streptococcus pneumoniae Immunity

Disease caused by Streptococcus pneumoniae (pneumococcus) is an important cause of morbidity and mortality in the United States and developing countries. Pneumococcal disease is prevalent among the very young, the elderly and immunocompromised individuals. This invention is an improved, immunogenic peptide construct consisting of a combination of antigenic epitopes of the PsaA (37-kDa) protein from S. pneumoniae.

Methods for the Simultaneous Detection of Multiple Analytes

CDC researchers have developed a method of simultaneously detecting and distinguishing multiple antigens within a biological sample. Epidemiological and vaccine studies require species serotype identification. Current methods of serotyping are labor intensive and can easily give subjective, errant results. This technology utilizes serotype specific antibodies bound to fluorescent beads, allowing for simultaneous single tube capture and detection of multiple antigens in one rapid, high-throughput flow cytometry assay.

Methods for Amelioration and Treatment of Pathogen-associated Inflammatory Response

This CDC invention provides methods for preventing or treating inflammatory response-linked, infection induced pathologies, which are mediated by endogenous substance P. Substance P is a naturally-occurring and major pro-inflammatory neuromediator or neuromodulator, and elevated levels of substance P have been implicated in numerous inflammation-associated diseases. More specifically, this technology entails administration of anti-substance P antibodies or anti-substance P antibody fragments to a subject in need, thereby inhibiting the activity of endogenous substance P.

Human iPSC-Derived Mesodermal Precursor Cells and Differentiated Cells

Cells, cell culture methods, and cell culture media compositions useful for producing and maintaining iPSC-derived cell lines that are of higher purity and maintain cell type integrity better than current iPSC-derived cell lines are disclosed. Human induced pluripotent stem cells (hiPSCs) can be generated by reprogramming somatic cells by the expression of four transcription factors. The hiPSCs exhibit similar properties to human embryonic stem cells, including the ability to self-renew and differentiate into all three embryonic germ layers: ectoderm, endoderm, or mesoderm.