Trans-auricular Left Atrial Appendage Ligation to Prevent Thrombosis

This technology includes an interventional device to occlude the left atrial appendage to prevent thrombus formation. Atrial fibrillation is the most common cardiac arrhythmia and is associated with formation of thrombus in the left atrial appendage. Standard preventative treatment involves anticoagulation, which is not tolerated by all patients. Existing devices necessitate improvement because they need trans-septal puncture and anticoagulation to prevent thrombus or are prone to life-threatening complications.

Single Scan Bright-blood and Dark-blood Phase Sensitive Inversion Recovery (PSIR) Late Gadolinium Enhancement (LGE) for Cardiovascular Magnetic Resonance (CMR) Imaging

This technology includes a technique to improves detection of myocardial scar compared with conventional bright-blood late gadolinium enhancement (LGE) techniques. Dark-blood late gadolinium enhancement (DB-LGE) improves tissue delineation with signal suppression of the blood pool based on T2-preparation pulse that is relatively independent from the blood flow velocities and improves scar detection in patients with known or suspected coronary artery disease.

Vascular Anchoring Introducer Sheath for Interventional Cardiac Procedures

This technology includes a device and method for maintaining access to a location in the body while reducing or eliminating the potential for pulling an access device (i.e., catheter) back through an opening, such as a cardiac procedure. An introducer sheath includes a distal indented portion and a balloon, so that once placed in a desired location through tissue, the balloon can be inflated to anchor the sheath against retraction.

Adaptive Sensitivity Encoding Incorporating Temporal Filtering (TSENSE)

The invention is an accelerated magnetic resonance imaging method developed to reduce the total imaging time for gated, segmented cine imaging or to increase the frame rate when imaging dynamic activity, such as heart motion or brain activity. The invention combines temporal filtering (e.g., the UNFOLD method) with a known spatial sensitivity encoding technique (SENSE or SMASH) to achieve a new technique that is the subject of the invention (TSENSE) having a higher degree of alias artifact rejection than could be obtained using either temporal or spatial filtering individually.

Compositions and Methods for Reducing Serum Triglycerides

This technology includes a vaccine for lowering plasma triglycerides by inducing the formation of autoantibodies against either ANGPTL3 or ANGPTL4, which are inhibitors of Lipoprotein Lipase. This was done by conjugating synthetic peptides based on ANGPTL3 or ANGPTL4 to virus- like particles (VLPS). Injection of the vaccine in animal models was shown to induce the autoantibody against the target and to lower plasma triglycerides.

Isotopes of Alpha Ketoglutarate and Related Compounds for Hyperpolarized MRI Imaging

This technology includes 1-13C-ketoglutarate which can be used for imaging the conversion to hydroxyglutarate (HG) or Gln in cancer cells with an IDH1 mutations by hyperpolarized MRI. The ability to detect the status of IDH1 mutations is clinically prognostic for multiple cancers. These exciting observations are limited by two factors, the major one being that the natural abundance of 13C at position C5 overlaps with 1-13C-2-hydroxyglutarate peak, which limits the sensitivity of analysis and prevents simultaneous observations of HG and Gln formation.

Systems and Methods for Applying Pressure to the Heart for the Treatment of Tricuspid Valve Regurgitation

This technology includes structures and methods for cinching a band around the heart for treating conditions including tricuspid valve regurgitation (TR). When positioned appropriately along the atrioventricular groove, the band is tightened around the heart which narrows the tricuspid annulus and relieves TR.

Methods to Produce Very Long Chain Fatty Acids (VLCFA) for Use as Nutritional Formulas and as Therapeutics for Disease

This technology includes a new method to prepare very long chain fatty acids (VLCFA), which does not use the previously reported toxic mercury amalgam, for use as nutritional supplements, and as therapeutics for various diseases. The key coupling step involves an organocopper mediated coupling of the Grignard regent derived from the bromo alkyl tetraene with a bromoalkyl containing a protected alcohol. After the coupling the alcohol Is deprotected and oxidized to prepare the very long fatty acid. The synthetic approach is flexible and can be used to prepare the other VLCFA compounds.

High Relaxivity Mulitivalent Gadolinium on a Peptide Scaffold for Targeted MRI Applications in Disease Diagnosis

This technology includes a peptide containing alternating Alanine and Lys(DOTA-Gd) residues can be used to increase the MRI relaxivity of a peptide. The low molecular weight construct can be appended to proteins, antibodies and peptides to increase MRI signals. This approach offers advantages over previous dendrimeric constructs.