Minibody for Conditioning prior to Hematopoietic Stem Cell and Progenitor Cell Transplantation

Patient conditioning is a critical initial step in hematopoietic stem and progenitor cell (HSPC) transplantation procedures to enable marrow engraftment of infused cells. Conditioning regimens have traditionally been achieved by delivering cytotoxic doses of chemotherapeutic agents and radiation. However, these regimens are associated with significant morbidity and mortality, and cannot be used safely in elderly or subjects with comorbidities.

Closed-ended Linear Duplex DNA (CELiD or ceDNA) for Non-viral Gene Transfer

This technology includes an alternative source of plasmid DNA produced in eukaryotic cells for non-viral gene transfer, which represent a novel eukaryotic alternative to bacterial plasmid DNA. Once introduced into non-dividing cells, ceDNA persists and transgene expression remains stable whereas plasmid (p) DNA is lost. The ceDNA and transfection reagent complex is nonimmunogenic allowing re-administration as needed: recombinant adeno-associated virus (rMV) is immunogenic precluding repeated administration.

Compatible 3-D Intracardiac Echography Catheter and System for Interventional Cardiac Procedures

This technology includes a versatile intravascular 3D intracardiac echocardiography (ICE) catheter that can operate under conventional X-ray and MRI for use during interventional cardiac procedures. The 3D MRICE and custom, GPU-based, real-time imaging system are also included. Structural heart disease affects more than 2.9% of the US population, and common interventional procedures can be difficult because of limitations in catheter devices and inadequate image guidance.

A Machine Learning Strategy to Improve the Fidelity of Imaging Time-Varying Signals to Improve Clinical Imaging

This technology includes a new technique to improve the fidelity of time-varying signals acquired in the dynamic contrast enhanced (DCE) imaging. This technique enhances the time-varying signals in a given DCE image series through deep convolutional neural networks (CNN) to learn the relationship of signal versus contrast concentration from other series of different contrast doses.

Trans-auricular Left Atrial Appendage Ligation to Prevent Thrombosis

This technology includes an interventional device to occlude the left atrial appendage to prevent thrombus formation. Atrial fibrillation is the most common cardiac arrhythmia and is associated with formation of thrombus in the left atrial appendage. Standard preventative treatment involves anticoagulation, which is not tolerated by all patients. Existing devices necessitate improvement because they need trans-septal puncture and anticoagulation to prevent thrombus or are prone to life-threatening complications.

Single Scan Bright-blood and Dark-blood Phase Sensitive Inversion Recovery (PSIR) Late Gadolinium Enhancement (LGE) for Cardiovascular Magnetic Resonance (CMR) Imaging

This technology includes a technique to improves detection of myocardial scar compared with conventional bright-blood late gadolinium enhancement (LGE) techniques. Dark-blood late gadolinium enhancement (DB-LGE) improves tissue delineation with signal suppression of the blood pool based on T2-preparation pulse that is relatively independent from the blood flow velocities and improves scar detection in patients with known or suspected coronary artery disease.

Potentiating Antibody Therapy for the Treatment of Cancer

This technology includes a strategy to target tumor cells that lost antigen following reaction with a therapeutic antibody by targeting the complement component C3d that has been deposited on target cells by the primary antibody. We previously generated a C3d-specific mouse/human chimeric antibody called C8xi and obtained proof of principle for the approach in two preclinical models. Here we summarize the generation of a new set of C3d targeting antibodies.

Method Of Identifying Inhibitors Of The Jak-STAT Signal Transduction Pathway

The invention provides identification methods for agents which inhibit the Jak-STAT signaling transduction pathway. Drugs identified by these methods are candidates for the treatment of proliferative disorders dependent on the Jak-STAT pathway, including those caused by HTLV-1. In addition, such agents may be potent immunosuppressive drugs with potential applications not only for organ transplantation but also for treatment of autoimmune diseases.

Adaptive Sensitivity Encoding Incorporating Temporal Filtering (TSENSE)

The invention is an accelerated magnetic resonance imaging method developed to reduce the total imaging time for gated, segmented cine imaging or to increase the frame rate when imaging dynamic activity, such as heart motion or brain activity. The invention combines temporal filtering (e.g., the UNFOLD method) with a known spatial sensitivity encoding technique (SENSE or SMASH) to achieve a new technique that is the subject of the invention (TSENSE) having a higher degree of alias artifact rejection than could be obtained using either temporal or spatial filtering individually.

Real Time Interactive Volumetric Magnetic Resonance Imaging

The invention makes possible "live" volume renderings from a Magnetic Resonance Imaging (MRI) scanner. Previously, volume renderings from MRI data could only be generated off-line, some time after the image data was collected. In one embodiment of the invention, the time between data collection and volume rendering update (the latency) is approximately one third of a second at a frame rate of approximately 10 updates per second. User interaction with the rendering, such as rotation and cut planes, is allowed during imaging.