Programmable and Modular Nucleic Acid Nanoassemblies-based (NAN) Platforms to Regulate Mechanosensitive Activation of T-cells

This technology includes mechanobiological nucleic acid nanoassemblies-based platforms with dynamically controlled efficiency of T-cell activation. T-cells are the central players in adaptive immune response led by a T-cell receptor (TCR) centric machinery. Current T-cell activation strategy (e.g., micron-scale beads) focuses on 2D TCR-agonist biomimetic surfaces and biomimetic 2D immune synapses with planar traction, which requires non-physiological hyper-stimulatory cytokines levels (e.g., IL-2), and thus, is incompatible with clinical applications.

89Zr-Oxine Complex for In Vivo PET Imaging of Labelled Cells and Associated Methods

This technology from the NCI Molecular Imaging Program relates to a Zirconium-89 (89Zr)-oxine complex for cell labeling, tracking of labeled cells by whole-body positron emission tomography/computed tomography (PET/CT) imaging, and associated methods. A long half-life of 89Zr (78.4 hours), high sensitivity of PET, and absence of background signal in the recipient enable tracking cells over a week using low levels of labeling radioactivity without causing cellular toxicity.