High Density Lipoprotein Targeting Protease Inhibitor Peptide for the Treatment of Alpha-1-antitrypsin (A1AT) Deficiency

This technology includes a novel concept and design for a lipoprotein targeting protease inhibitor for the treatment of Alpha-1-antitrypsin (A1AT) deficiency. A1AT deficiency occurs in about 1 in 2500 individuals in the United States and Europe, and people with this condition develop severe liver disease and emphysema/chronic obstructive pulmonary disease (COPD). Current treatment involves intravenous infusion of purified human A1AT protein, which is very expensive and only modestly effective.

Engineering Neural Stem Cells Using Homologous Recombination

Methods for modifying the genome of a Neural Stem Cell (NSC) are disclosed. Also, methods for differentiating NSCs into neurons and glia are described. NSCs are multipotent, self-renewing cells found in the central nervous system, capable of differentiating into neurons and glia. NSCs can be generated efficiently from pluripotent stem cells (PSCs) and have the capacity to differentiate into any neuronal or glial cell type of the central nervous system.

3D Bioprinting of Cardiac Patch with Anisotropic and Perfusable Architecture for the Repair of Damaged Cardiac Muscle

This technology includes a novel cardiac patch which was 3D printed to repair damaged cardiac tissue. Based on biological and anatomical understanding of myocardial tissue, a novel 3D bioprinting technique was developed to directly fabricate the cellularized and vascularized cardiac patch with anisotropic fiber and perfusable vessel architecture. The design will integrate biomimetic aligned myocardial fibers and perfusable blood vessels to create a thick, functional cardiac patch, suitable for the human heart implantation.

Polyclonal Antibodies to Apolipoprotein L1 for Use in Basic Science Research

This technology includes antibodies to apolipoprotein L1 (ApoL 1) to be used in basic science laboratory studies. ApoL 1 is a protein that is present within cells and circulates as component of high-density lipoprotein. Its functions are not well understood. Recently APOL 1 genetic variants have been shown to be highly associated with kidney disease in African Americans.

Fibroblast Growth Factor Receptor 4 (FGFR4) Monoclonal Antibodies and Methods of Their Use

Several Fibroblast Growth Factor Receptor 4 (FGFR4) specific antibodies with binding affinity at the nanomolar range have been successfully developed at the Genetics Branch. These antibodies have been made into different formats of therapeutic including Antibody Drug Conjugate (ADC), Bispecific T cell engager (BiTE) ae well as Chimeric Antigen Receptor (CAR)-T cells.

Proof of principle experiments have shown that when treated with FGFR4 positive tumor cells:  

B-cell Surface Reactive Antibodies for the Treatment of B-Cell Chronic Lymphocytic Leukemia

B-cell chronic lymphocytic leukemia (B-CLL) is a cancer characterized by a progressive accumulation of functionally incompetent lymphocytes.  Despite high morbidity and mortality, the only available potential cure is allogeneic hematopoietic stem cell transplantation (alloHSCST).  However, there is less than a 50% chance of finding a matching bone marrow or blood donor for B-CLL patients.  Other clinically tested targeted therapies such as rituximab and alemtuzumab target both malignant and normal B cells, resulting in immunosuppression.

Use of Anti-CD47 Antibodies for the Treatment of Cancer

High expression of CD47, a cell surface receptor on several types of cancer cells, has been identified as a ‘don’t eat me signal’ that inhibits their killing by macrophages or NK cells. Conversely, the CD47 antibody B6H12 that blocks SIRPα binding enhances macrophage-dependent clearance of tumors in several mouse models, although others have shown that such clearance can be independent of SIRPα signaling.

Programmable and Modular Nucleic Acid Nanoassemblies-based (NAN) Platforms to Regulate Mechanosensitive Activation of T-cells

This technology includes mechanobiological nucleic acid nanoassemblies-based platforms with dynamically controlled efficiency of T-cell activation. T-cells are the central players in adaptive immune response led by a T-cell receptor (TCR) centric machinery. Current T-cell activation strategy (e.g., micron-scale beads) focuses on 2D TCR-agonist biomimetic surfaces and biomimetic 2D immune synapses with planar traction, which requires non-physiological hyper-stimulatory cytokines levels (e.g., IL-2), and thus, is incompatible with clinical applications.

89Zr-Oxine Complex for In Vivo PET Imaging of Labelled Cells and Associated Methods

This technology from the NCI Molecular Imaging Program relates to a Zirconium-89 (89Zr)-oxine complex for cell labeling, tracking of labeled cells by whole-body positron emission tomography/computed tomography (PET/CT) imaging, and associated methods. A long half-life of 89Zr (78.4 hours), high sensitivity of PET, and absence of background signal in the recipient enable tracking cells over a week using low levels of labeling radioactivity without causing cellular toxicity.