Method of Manufacturing Papilloma Infiltrating Lymphocyte (PIL) Cell Therapy Products as a Treatment for Patients with Chronic Viral Infection(s)

Summary:

The National Cancer Institute (NCI) seeks research co-development partners and/or licensees for development of papilloma-infiltrating lymphocytes (PIL) as treatment for patients with chronic human papillomavirus (HPV) 6 or 11 infections.

3-o-sulfo-galactosylceramide Analogs for Targeting Lung Metastases

Summary:

Lung metastases represent a major clinical challenge in advanced cancer, with poor survival rates and no effective therapies to prevent their development. Researchers at the National Cancer Institute (NCI) have developed C24:2, a first-in-class synthetic 3-O-sulfo-galactosylceramide analog. After lysosomal processing by dendritic cells, C24:2 switches immune specificity to activate type I NKT cells, triggering a potent IFN-γ–mediated Th1 response.

Strategies to Protect Mammalian Neural Tissue Against Cold and Potentially Other Metabolic Stresses and Physical Damages

Researchers at the National Eye Institute (NEI) have discovered an invention describing a composition and method(s) of using such composition for preserving viability of cells, tissues, or organs at a low temperature (around 4ºC). Current cold storage solutions or methods for cells, tissues, and organs are suboptimal due to irreversible damage to cold-sensitive tissue or organ transplants that need a longer term of storage for facilitating clinical practices.

Camel VHH Nanobodies Bind the S2 Subunit of SARS-CoV-2 and Broadly Neutralize Variants including Omicron

Since its emergence in 2019, COVID-19 infected over 600 million people and over 6 million people have died from the disease. COVID-19 is an infectious disease caused by the SARS-CoV-2 virus. Neutralizing antibodies have been developed to bind to the receptor binding domain (RBD) on the spike (S) protein. Blocking the interaction of the RBD and the ACE2 receptor, is critical in neutralizing the virus. However, the S2 subunit, is also critical for viral infection and entry into human cells.

Humanized Monoclonal Antibodies Specific Against Human Soluble Tissue Factor (hsTF) as Diagnosis, Prevention and Therapeutic Agents for Thrombosis

Summary:

The National Cancer Institute (NCI) seeks research co-development partners and/or licensees for a novel humanized monoclonal antibody (58B3) that selectively targets a newly identified soluble Tissue Factor (sTF) to diagnose, prevent and treat pathological thrombosis associated with inflammation, viral/bacterial infection, sepsis and cancer – without affecting normal hemostasis.

Novel Human Immunogenic Epitopes of the Human Endogenous Retrovirus ERVMER34-1

Summary:

The National Cancer Institute (NCI) seeks research co-development partners and/or licensees for the clinical translation of novel peptide-based therapeutic cancer vaccines derived from ERVMER34-1, a human endogenous retrovirus (HERV) antigen, offering a unique opportunity to address a significant unmet need in the treatment of various carcinomas.