Inhibition of T Cell Lactate Dehydrogenase (LDH) ex vivo Enhances the Anti-tumor Efficacy of Adoptive T Cell Therapy

Adoptive T cell therapy (ACT) with tumor infiltrating lymphocytes (TIL), T cell receptor (TCR) and Chimeric Antigen Receptor (CAR) engineered T cells, or hematopoietic stem cell transplantation, is a promising new approach to cancer treatment. ACT harnesses an individual's adaptive immune system to fight against cancer, with fewer side-effects and more specific anti-tumor activity. Despite their promise of ACT as curative, these therapies are often limited by the persistence and robustness of the responses of the T cells to the cancer cells.

A Viral Exposure Signature to Define and Detect Early Onset Hepatocellular Carcinoma

Early detection of liver cancer, such as hepatocellular carcinoma (HCC), is key to improve cancer-related mortality. More than 800,000 people are diagnosed with this cancer each year throughout the world. Liver cancer is also a leading cause of cancer deaths worldwide, accounting for more than 700,000 deaths each year. Currently, millions of Americans and possibly billions in the world are considered at risk for developing liver cancer.

Chimeric Antigen Receptors (CAR)-T Cells that Target the Non-Shed Portion of Mesothelin as a Therapeutic Agent

Mesothelin (MSLN) is an excellent target for antibody-based therapies of cancer because of its high expression in many malignancies but lack of expression on essential normal tissues. Unfortunately, a large fragment of MSLN is shed from cancer cells, causing the currently available anti-MSLN antibodies (and immunoconjugates thereof) which bind to the shed portion of MSLN to quickly lose their therapeutic effectiveness over time. Indeed, the shed portion of MSLN can act as a decoy for these antibodies, further limiting them from reaching and destroying tumor cells.

Assay to Screen Anti-metastatic Drugs

Scientists at the NCI developed a research tool, a murine cell line model (JygMC(A)) with a reporter construct, of spontaneous metastatic mammary carcinoma that resembles the human breast cancer metastatic process in a triple negative mammary tumor. The assay is useful for screening compounds that specifically inhibit pathways involved in mammary carcinoma and can improve clinical management of of triple negative breast cancer that are greatly refractory to conventional chemo and radiotherapy.

Computer-Aided Diagnostic for Use in Multiparametric MRI for Prostate Cancer

Multiparametric MRI improves image detail and prostate cancer detection rates compared to standard MRI. Computer aided diagnostics (CAD) used in combination with multiparametric MRI images may further improve prostate cancer detection and visualization. The technology, developed by researchers at the National Institutes of Health Clinical Center (NIHCC), is an automated CAD system for use in processing and visualizing prostate lesions on multiparametric MRI images.

Fully Human Antibody Targeting Tumor Necrosis Factor Receptor Type 2 (TNFR2) for Cancer Immunotherapy

Tumor necrosis factor receptor type 2 (TNFR2)-expressing regulatory T cells (Tregs), present in the tumor microenvironment, play an important role in tumor immune evasion. TNFR2 plays a crucial role in stimulating the activation and proliferation of Tregs, a major checkpoint of antitumor immune responses. In addition to its expression on Tregs, TNFR2 is also known to be overexpressed on some types of tumors and the survival and growth of these tumor cells is promoted by ligands of TNFR2.

Therapeutic Antitumor Combination Containing TLR4 Agonist HMGN1

Immune checkpoint inhibitors (e.g. CTLA-4, PD-L1) have recently shown significant promise in the treatment of cancer.  However, when used alone, these checkpoint inhibitors are limited by the absence or repression of immune cells within the targeted cancer.  For those cancers associated with these limited immune systems, there remains a need for effective therapies.  Agents capable of recruiting and activating immune cells to these types of cancers could extend the overall and complete response rates of combination therapies within the immunooncology domain.