A Novel Carbohydrate Antibody to GalNac1-3Gal and Its Application for Cancer Diagnostic and Prognosis

Cervical cancer is one of the most common cancers among women worldwide. Currently, physical descriptors such as tumor size and depth are the primary factors used for deciding the course of treatment. Despite significant efforts to identify prognostic biochemical markers or therapeutic targets to improve diagnosis and treatment, none have achieved routine clinical use. An example of one previously identified biomarker is the Tn antigen, a carbohydrate moiety composed of a GalNAc residue linked to serine or threonine.

T-cell Receptor Targeting Human Papillomavirus-16 E6 Oncoprotein

Human papillomavirus (HPV) is a group of human viruses known to cause various malignancies. Of the group, HPV-16 is the most prevalent strain – an estimated 90% of adults have been exposed. HPV-16 is also the strain most commonly associated with malignancy, causing the vast majority of cervical, anal, vaginal, vulvar, and penile cancers. Currently, HPV-positive malignancies non-responsive to surgery or radiation are incurable and poorly palliated by existing systemic therapies. Thus, an alternative therapeutic approach for HPV-positive malignancies is needed. 

 

Polymer-Cast Inserts for Cell Histology and Microscopy

Three-dimensional (3D) cell cultures systems are important for studying cell biology because they provide in vivo-like microenvironments more physiologically relevant than two-dimensional (2D) culture systems. In 3D culture systems, cells are grown in culture matrixes and turn into spheroids and organoids later processed for downstream analysis by microscopy and histology techniques. The processing of 3D cultures for analysis by microscopy or histology is laborious and time-consuming due to incompatibility of the 3D culture vessels and the microscopy and pathology blocks.

Synergistic Use of Exo VII Inhibitors And Quinolone Antibiotics For Treating Bacterial Infection

Topoisomerase poisons, such as quinolone antibiotics, are widely used as anticancer drugs and antibiotics. Quinolone antibiotics act by trapping prokaryotic type IIA topoisomerases (DNA gyrase and TOPO IV), resulting in irreversible topoisomerase cleavage complexes. However, current U.S. Food and Drug Administration (FDA) guidance reserves the use of quinolones for the most serious bacterial infections due to their associated side effects and to limit the occurrence of drug-resistant bacterial strains.

Oxynitidine Derivatives Useful as Inhibitors of Topoisomerase IB (TOP1) and Tyrosyl-DNA Phosphodiesterase 1 (TDP1) for Treating Cancer

Summary: 

The National Cancer Institute (NCI) is actively seeking potential licensees and/or co-development research collaboration partners interested in advancing oxynitidine derivatives as novel inhibitors of topoisomerase IB (TOP1) and tyrosyl-DNA phosphodiesterase 1 (TDP1) for cancer treatment. These TOPI and TDP1 inhibitors, when administered together, demonstrate enhanced anti-tumor efficacy.

Description of Technology: 

Cancer Vaccines against POTE for Treating Solid Tumors

POTE is a novel tumor antigen expressed in a variety of cancers including breast, prostate, colon, lung, ovary, and pancreas cancers.  POTE has limited expression in normal tissues and therefore a specific target for cancer treatments, including immunotherapy.  The researchers seek statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize immunogenic peptides. 

Mouse Lines with Fluorescently Labelled Membrane Proteins Regulating Cellular Motility and Membrane Trafficking

Cell motility and membrane trafficking play important roles in regulating cell division, cell migration, cell death and autophagy. Impairment of these processes can result in enhanced cell proliferation and survival and increased migration and invasion leading to cancer. Several proteins involved in cell motility and membrane trafficking have been shown to be dysregulated in various cancers. There is therefore a need for development of animal models for studying the roles of these proteins in cancer and their responses to drug treatment in vivo.