T Cell Receptor Targeting HPV6 E2 and a Panel of Cos7 Cells Expressing Different HLA Class I Proteins for Use in Validation and Potency Studies

Summary:

The National Cancer Institute (NCI) seeks licensees for this invention comprising (1) a novel T cell receptor (TCR) specific to the E2 protein of Human papillomavirus (HPV) type 6  in the context of the human leukocyte antigen, HLA-B55, and (2) a panel of Cos7 cells expressing different HLA proteins for validation of T cell responses in immunotherapies for low-risk HPV-related diseases such as recurrent respiratory papillomatosis and anogenital condyloma.

Oxynitidine Derivatives as Tyrosyl DNA Phosphodiesterase (TDP) Inhibitors and Radiosensitizers

Summary: 

The National Cancer Institute (NCI) is actively seeking potential licensees and/or co-development research collaboration partners interested in further developing this family of oxynitidine derivatives as tyrosyl-DNA phosphodiesterase 1 (TDP1) inhibitors and radiosensitizers for the treatment of cancer. 

Method of Detecting Circulating Cell-Free HPV 6 and 11 DNA in Patients Afflicted With Diseases Caused by Chronic HPV 6 or 11 Infection and Use Thereof

Summary:

The National Cancer Institute (NCI) and Frederick National Laboratory for Cancer Research (FNLCR) seek research co-development partners and/or licensees for commercial development of a novel liquid biopsy diagnostic for non-invasive detection of cell-free HPV 6 and 11 DNA for recurrent respiratory papillomatosis (RRP).

Method of Manufacturing Papilloma Infiltrating Lymphocyte (PIL) Cell Therapy Products as a Treatment for Patients with Chronic Viral Infection(s)

Summary:

The National Cancer Institute (NCI) seeks research co-development partners and/or licensees for development of papilloma-infiltrating lymphocytes (PIL) as treatment for patients with chronic human papillomavirus (HPV) 6 or 11 infections.

3-o-sulfo-galactosylceramide Analogs for Targeting Lung Metastases

Summary:

Lung metastases represent a major clinical challenge in advanced cancer, with poor survival rates and no effective therapies to prevent their development. Researchers at the National Cancer Institute (NCI) have developed C24:2, a first-in-class synthetic 3-O-sulfo-galactosylceramide analog. After lysosomal processing by dendritic cells, C24:2 switches immune specificity to activate type I NKT cells, triggering a potent IFN-γ–mediated Th1 response.

Strategies to Protect Mammalian Neural Tissue Against Cold and Potentially Other Metabolic Stresses and Physical Damages

Researchers at the National Eye Institute (NEI) have discovered an invention describing a composition and method(s) of using such composition for preserving viability of cells, tissues, or organs at a low temperature (around 4ºC). Current cold storage solutions or methods for cells, tissues, and organs are suboptimal due to irreversible damage to cold-sensitive tissue or organ transplants that need a longer term of storage for facilitating clinical practices.