Assay to Screen Anti-metastatic Drugs

Scientists at the NCI developed a research tool, a murine cell line model (JygMC(A)) with a reporter construct, of spontaneous metastatic mammary carcinoma that resembles the human breast cancer metastatic process in a triple negative mammary tumor. The assay is useful for screening compounds that specifically inhibit pathways involved in mammary carcinoma and can improve clinical management of of triple negative breast cancer that are greatly refractory to conventional chemo and radiotherapy.

Computer-Aided Diagnostic for Use in Multiparametric MRI for Prostate Cancer

Multiparametric MRI improves image detail and prostate cancer detection rates compared to standard MRI. Computer aided diagnostics (CAD) used in combination with multiparametric MRI images may further improve prostate cancer detection and visualization. The technology, developed by researchers at the National Institutes of Health Clinical Center (NIHCC), is an automated CAD system for use in processing and visualizing prostate lesions on multiparametric MRI images.

Fully Human Antibody Targeting Tumor Necrosis Factor Receptor Type 2 (TNFR2) for Cancer Immunotherapy

Tumor necrosis factor receptor type 2 (TNFR2)-expressing regulatory T cells (Tregs), present in the tumor microenvironment, play an important role in tumor immune evasion. TNFR2 plays a crucial role in stimulating the activation and proliferation of Tregs, a major checkpoint of antitumor immune responses. In addition to its expression on Tregs, TNFR2 is also known to be overexpressed on some types of tumors and the survival and growth of these tumor cells is promoted by ligands of TNFR2.

Therapeutic Antitumor Combination Containing TLR4 Agonist HMGN1

Immune checkpoint inhibitors (e.g. CTLA-4, PD-L1) have recently shown significant promise in the treatment of cancer.  However, when used alone, these checkpoint inhibitors are limited by the absence or repression of immune cells within the targeted cancer.  For those cancers associated with these limited immune systems, there remains a need for effective therapies.  Agents capable of recruiting and activating immune cells to these types of cancers could extend the overall and complete response rates of combination therapies within the immunooncology domain. 

Polypeptides for Stimulation of Immune Response (Adjuvants)

HMGN polypeptides belong to the high mobility group (HMG) family of chromosomal binding peptides. HMGN polypeptides typically function inside the cell nucleus to bind to DNA and nucleosomes and regulate the transcription of various genes. HMGN polypeptides also can be released by peripheral blood mononuclear cells. However, the extracellular release of a HMGN polypeptide initiates activation of the immune system. Therefore, it has potential use as a biological therapeutic for stimulating an immune response.

Renal Selective Unsaturated Englerin Analogues

Englerin A, a natural product, has shown growth-inhibiting activity against renal cancer cell lines. The compound is an agonist of protein kinase C (PCK) theta, which results in cell cytotoxicity, insulin inhibition, and selective activation of viral replication in T cells.  Englerin A derivatives are promising treatment strategies for any diseases associated with PKC theta and/or ion channel proteins.

Anti-Viral Compounds that Inhibit HIV Activity

Several novel tropolone derivatives have been identified that inhibit HIV-1 RNase H function and have potential for anti-viral activity due to reduced cellular toxicity.  Inhibiting RNase H function is a potential treatment for many viral infections, since RNase H function is essential for viral replication for many pathogenic retroviruses such as HIV-1 and HIV-2.  Although many hydroxytropolone compounds are potent RNase H inhibitors biding at the enzymatic active site, they are limited as therapeutic candidates by their toxicity in mammalian cells.  The toxicity thought to

Methods For Treating or Preventing Inflammation and Periodontitis

Bone-loss-related diseases, such as periodontitis, are characterized by an imbalance between the formation and activity of osteoblasts and osteoclasts, leading to bone loss. There are several signaling pathways that participate in the osteoclastogenesis process. Finding inhibitors of these pathways and other osteoclastogenesis-related pathways may have an effect on bone-loss diseases.