Improved PE-based Targeted Toxins: A Therapeutic with Increased Effectiveness

Targeted toxins (e.g., immunotoxins) are therapeutics that have at least two important components: (1) a toxin domain that is capable of killing cells and (2) a targeting domain that is capable of selectively localizing the toxic domain to only those cells which should be killed. By selecting a targeting domain that binds only to certain diseased cells (e.g., a cell which only expresses a cell surface receptor when in a diseased state), targeted toxins can kill the diseased cells while allowing healthy, essential cells to survive.

New Class of Immunotoxins with Extended Half-Life and High Anti-Tumor Activity

Recombinant immunotoxins (RITs) constitute a promising solution to hematologic cancers (e.g., Multiple Myeloma [MM]). RITs are chimeric proteins composed of a targeting domain fused to a bacterial toxin. Upon binding to a cancer cell displaying the target antigen, RITs are internalized, metabolized and the released toxin kills the cell. While highly active and effective, current RITs have short half-lives, requiring them to be used in high concentrations for treatment. At such high concentrations, RITs may show nonspecific activity and kill healthy cells.

A Target for the Development of Diagnostics and Therapeutics for Abnormal Hematopoiesis

The zinc finger protein ZFP36L2 has been shown by the inventors to play an essential role in hematopoiesis, a process that is dysregulated in hematological cancers, anemia, and other conditions. Thus, ZFP36L2 has promise for use in a diagnostic test to detect abnormal hematopoiesis, or as a target for the development of therapeutics to treat abnormal hematopoiesis.

Method to Detect and Quantify In Vivo Mitophagy

This technology includes a transgenic reporter mouse that expresses a fluorescent protein called mt-Keima, to be used to detect and quantify in vivo mitophagy. This fluorescent protein was originally described by a group in Japan and shown to be able to measure both the general process of autophagy and mitophagy. We extended these results by creating a living animal so that we could get a measurement for in vivo mitophagy. Our results demonstrate that our mt-Keima mouse allows for a straightforward and practical way to quantify mitophagy in vivo.

Antibody to Mitochondrial Uniporter (MCU

This technology includes a generated polyclonal antibody in rabbit that detects the mitochondrial uniporter (MCU) protein. This antibody was created by immunizing rabbits with a synthesized sequence of the MCU protein and can be used to identify and quantify MCU protein in various tissues. The polyclonal nature of the antibody ensures it recognizes multiple epitopes on the MCU, enhancing detection reliability. This technology is crucial for understanding MCU's role in mitochondrial function and mammalian physiology.

Antibodies to TMC1 Protein for Hearing Loss

This technology includes antibodies for TMC1 protein as a treatment for hearing loss. TMC1 is one of the common genes causing hereditary hearing loss. Our laboratory used synthetic peptides corresponding to the TMC1 protein to immunize rabbits. The resulting antisera were shown to bind to TMC1 protein expressed in heterologous expression systems. TMC1 protein is required for the transduction of sound into electrical impulses in inner ear sensory cells.

System for Automated Anatomical Structures Segmentation of Contrast-Enhanced Cardiac Computed Tomography Images

This technology includes a fully automatic 3D image processing system to segment the heart as well as other organs from contrast-enhanced cardiac computed tomography (CCT) images. Our method detects four cardiac chambers including left ventricle, right ventricle, left atrium, right atrium, as well as the ascending aorta and left ventricular myocardium. It also classifies noncardiac tissue structures in the CCT images such as lung, chest wall, spine, descending aorta, and liver.

Use of VDAC inhibitor, VBIT4, as a Treatment for Lupus

This technology includes a small molecule drug (VDAC inhibitor, also known as VBIT4) that may be useful for inhibiting lupus disease. To test lupus animal model, VBIT4 was continuously administered for 5 weeks to mice and there was no mortality or clinical symptoms in these animals. Additionally, VBIT4 treatment blocked the development of skin lesions and alopecia of the ears and face, and suppressed the thickening of the epidermis that accompanies leukocyte infiltration.

Resolution Doubling with Digital Confocal Microscopy

This technology includes a microscopy method that reduces the speed penalty at least 1000-fold, while retaining resolution improvement. A Digital mirror device (DMD) or sweptfield confocal unit is used to create hundreds to thousands of excitation foci that are imaged to a sample mounted in a conventional microscope and record the resulting emissions on an array detector. Detection of each confocal spot is done in our proprietary software, as is the processing and deconvolution that is used for a 2x resolution enhancement.

Transgene Free Non-human Primate Induced Pluripotent Stem Cells (iPSCs) for Use in Pre-clinical Regenerative Medicine Research

This technology includes rhesus macaque induced pluripotent stem cells (iPSCs) lines from multiple animals and various types of cells to establish this pre-clinical model. iPSCs are a type of pluripotent stem cell that can be generated from adult somatic cells. The iPSC technology holds great potential for regenerative medicine. Before clinical application, it is critical to evaluate safety and efficacy in a clinically-relevant animal model. We propose that non-human primate models are particularly relevant to test iPSC-based cell therapies.