Increased Protein Expression Vector for Vaccine Applications
A High-Yield Perfusion-Based Transient Gene Expression Bioprocess
Non-invasive diagnostic and prognostic assay for early stage lung cancer
In the United States alone, one of four cancer deaths occur from lung cancer and there are over 8 million individuals considered to be at high-risk due to cigarette smoking and other behaviors. It's well known that early detection of cancer significantly improves survival of this disease, however a lack of lung cancer screenings and analysis precludes fast results at a low cost.
Programmable and Modular Nucleic Acid Nanoassemblies-based (NAN) Platforms to Regulate Mechanosensitive Activation of T-cells
This technology includes mechanobiological nucleic acid nanoassemblies-based platforms with dynamically controlled efficiency of T-cell activation. T-cells are the central players in adaptive immune response led by a T-cell receptor (TCR) centric machinery. Current T-cell activation strategy (e.g., micron-scale beads) focuses on 2D TCR-agonist biomimetic surfaces and biomimetic 2D immune synapses with planar traction, which requires non-physiological hyper-stimulatory cytokines levels (e.g., IL-2), and thus, is incompatible with clinical applications.
Hybridoma Cell Lines 2A4 And 5B12 Against Puromycin
Protein translation is a central cellular function attracting increasing attention from cell biologists as they integrate gene product specific information into a systems view of cellular function. Scientists at NIAID developed the puromycin-specific antibodies that allow for the specific detection of puromycin-containing nascent polypeptides via standard immunofluorescence or flow cytometry.
Multi Protein Nanoparticle Monkeypox Vaccine
In 2022, the World Health Organization declared an atypical outbreak of monkeypox (Mpox), which has caused approximately 30,000 cases of Mpox infection within the United States as of April 2023. Mpox represents a current threat to public health, and there is an immediate need for an effective vaccine. To address this, NIAID has developed a vaccine approach comprising virus-like nanoparticles coated with modified Mpox proteins.
Micro-Dose Calibrator for Pre-clinical Radiotracer Assays
Molecular imaging is a disease-specific targeting modality that promises much more accurate diagnoses of serious diseases such as cancer and infections. Agents are being continually developed with a view to clinical translation, with several such therapies requiring measurement of very small doses. Currently, there is no way of accurately measuring small amounts of radioactivity used in many pre-clinical tracer studies, as on-the-market commercial dose calibrators measure at too high a dose range, typically at 10-1000 µCi and higher.
Removal of Selected Proteins Using Light Energy: Photoimmunotherapy
Researchers at the NCI Laboratory of Molecular Theranostics and the Molecular Imaging Program have developed a new method to modify, isolate and remove a single chemically-labeled molecule or a cluster of proteins associated with the chemically-labeled protein. The chemical label can be an antigen-antibody complex. This discovery is based on the mechanism of photo-immunotherapy (PIT).
89Zr-Oxine Complex for In Vivo PET Imaging of Labelled Cells and Associated Methods
This technology from the NCI Molecular Imaging Program relates to a Zirconium-89 (89Zr)-oxine complex for cell labeling, tracking of labeled cells by whole-body positron emission tomography/computed tomography (PET/CT) imaging, and associated methods. A long half-life of 89Zr (78.4 hours), high sensitivity of PET, and absence of background signal in the recipient enable tracking cells over a week using low levels of labeling radioactivity without causing cellular toxicity.