T-cell Receptor Targeting Human Papillomavirus-16 E7 Oncoprotein

Human papillomavirus (HPV) is a group of human viruses known to cause various malignancies. Of the group, HPV-16 is the most prevalent strain – an estimated 90% of adults have been exposed. HPV-16 is also the strain most commonly associated with malignancy, causing the vast majority of cervical, anal, vaginal, vulvar, and penile cancers. Currently, HPV-positive malignancies non-responsive to surgery or radiation are incurable and poorly palliated by existing systemic therapies. Thus, an alternative therapeutic approach for HPV-positive malignancies is needed. 

3-o-sulfo-galactosylceramide Analogs as Activators of Type II Natural Killer T (NKT) Cells to Reduce Cancer Metastasis to the Lung

Lung metastases are a sign of widespread cancer with poor survival rate. Lung malignancies can originate from almost any cancer type spread via the blood stream. Most common lung metastases are from melanoma, breast cancer, bladder cancer, colon cancer, prostate cancer, neuroblastoma, and sarcoma. Living more than 5 years with lung metastases is uncommon, and surgical procedures are only effective with localized lung metastases. Lung metastasis are extremely frequent and resistant to regular treatment due to immunosuppressive regulatory sulfatide-reactive type II NKT cells.

Antisense Oligonucleotides against Cancer Cell Migration and Invasion

Advanced stage cancers are typically marked by metastases of the primary cancer to secondary sites such as lungs, liver, and bones. Such metastatic cancers result in strikingly low 5-year survival rates, underscoring the need for novel therapeutics. For example, bone metastasis of primary breast cancer has a 5-year survival rate of 13%, lung cancer only 1%. There is a need for targeted therapy options specific to metastases. One approach to targeting metastases is to reduce cancer cell migration and invasion.

Adaptive Sensitivity Encoding Incorporating Temporal Filtering (TSENSE)

The invention is an accelerated magnetic resonance imaging method developed to reduce the total imaging time for gated, segmented cine imaging or to increase the frame rate when imaging dynamic activity, such as heart motion or brain activity. The invention combines temporal filtering (e.g., the UNFOLD method) with a known spatial sensitivity encoding technique (SENSE or SMASH) to achieve a new technique that is the subject of the invention (TSENSE) having a higher degree of alias artifact rejection than could be obtained using either temporal or spatial filtering individually.

Dopamine D3 Receptor Agonist Compounds, Methods of Preparation, Intermediates Thereof, and their Methods of Use

Due to the large degree of homology among dopamine D2-like receptors, discovering ligands capable of discriminating between the D2, D3, and D4 receptor subtypes remains a significant challenge. The development of subtype-selective pharmaceutical small molecules to activate (agonists) signals regulated by D2-like receptors has been especially difficult. 

Natural product-based anti-cancer agents: aza-Englerin analogues

Chemotherapy resistance in a wide array of cancers is often associated with enhanced glucose uptake and dysregulation of the insulin signaling pathway.  Therapeutics capable of inhibiting insulin signaling would be valuable as a stand-alone treatment and for sensitizing resistant tumors to standard chemotherapy regiments.  Researchers at NCI’s Genitourinary Malignancies Branch have synthesized and developed a series of Englerin-A ana

A Novel Genetically Encoded Inhibitor of Hippo Signaling Pathway to Study YAP1/TAZ-TEAD Dependent Events in Cancer

The Hippo signaling pathway regulates a multitude of biological processes including cell proliferation, apoptosis, differentiation, tissue homeostasis, and stem cell functions. This axis has been recently listed as one of the top 10 signaling pathways altered in human cancer. Its role in modulating cell growth and proliferation is mediated by the activation of Yes-associated protein 1 (YAP1) and transcriptional co-activator with PDZ-binding domain (TAZ).

Mice, Organs, and Mouse Alleles Carrying Germline and Conditional Deletions of the Zbtb7b Gene

The Zbtb7b gene encodes the zinc finger transcription factor ThPOK (also known as cKrox) that promotes CD4 lineage differentiation in immature T cells. CD4+ T cells, also known as “helper” T cells, are critical for long-term immunity against pathogens as well as for promoting CD8+ “effector” T cell and effective B cell responses. ThPOK is needed for the development and functional fitness of CD4+ T cells as well as multiple aspects of the immune response to infection. As such, ThPOK offers a potential target for immune regulation.

High Efficacy Vaccine and Microbicide Combination For Use Against HIV

Human immunodeficiency virus (HIV) remains a major global health challenge despite the advancement made in development of effective antiretrovirals (ARVs). ARVs are effective at limiting replication and spread of the virus, and progression to acquired immuno-deficiency syndrome (AIDS). However, ARVs often lead to emergence of drug-resistant virus strains insensitive to treatment and with toxic effects following long-term usage.

Improved HIV Vaccines Through Ras Activation

Researchers at the National Cancer Institute (NCI) have developed a new method of improving the efficacy of vaccines in patients with human immunodeficiency virus (HIV) by activating Ras. This method can be used to develop more efficacious vaccine compositions by activating Ras before, during, or after vaccination. Additionally, the researchers discovered that modulation of the Ras pathways could be a predictive biomarker of protection against HIV.