Advancing VZV Antibody Detection: A High-Throughput LIPS Assay for Varicella Vaccine Recipients

The technology described is a sophisticated and high-throughput luciferase immunoprecipitation system (LIPS) assay designed to detect antibodies specific to Varicella-zoster virus (VZV) glycoprotein E (gE). By transfecting cells with VZV protein-Renilla luciferase fusion protein constructs and subsequently performing immunoprecipitations with protein A/G beads, this innovative assay enables the quantitative measurement of VZV gE antibody levels in blood serum samples.

Advancements in Postexposure Prophylaxis: Evaluating High-Potency Rabies-Neutralizing Monoclonal Antibodies

This technology represents a significant advancement in the field of rabies prevention, focusing on the development of highly potent rabies-neutralizing monoclonal antibodies (mAbs) for use in postexposure prophylaxis (PEP). With two mAbs, F2 and G5a, displaying exceptional neutralizing titers of 1154 and 3462 International Units (IUs) per milligram, respectively, these antibodies have the potential to offer enhanced protection against rabies when administered alongside rabies vaccines.

DeePlexing – Extending Imaging Multiplexity Using Machine Learning

Spatial proteomics and transcriptomics are fast-emerging fields with the potential to revolutionize various branches of biology. In the last five years, various multiplex immunofluorescence and immunohistochemistry imaging methods have been developed to stain 5-60 different protein markers in a given tissue. Nonetheless, most of these techniques are iterative and can image a maximum of 3-8 markers in a single cycle, resulting in processing time of several hours to days.

A Fundamental Tool for Efficient Recovery of RNA Viruses through Reverse Genetics

BSR T7/5 cells represent a foundational advancement in virology, offering a robust platform for the recovery of RNA viruses via reverse genetics. Established over 20 years ago, these cells have proven instrumental in the recovery of a wide array of RNA viruses, particularly those belonging to the mononegavirales order.

Generalized MRI Artifact Reduction Using Array Processing Method

The invention is a phased array combining method for reducing artifacts in Magnetic Resonance (MR) imaging. The method uses a constrained optimization that optimizes signal-to-noise subject to the constraint of nulling ghost artifacts at known locations. The method is effective in reducing or canceling artifacts that arise in a wide variety of MR applications, including ghost artifacts from echo planar imaging and Gradient Recalled Echo with Echo Train (FGRE-ET) imaging used in cardiac or other rapid imaging applications.

Development of Mutations Useful for Attenuating Dengue Viruses and Chimeric Dengue Viruses

Although flaviviruses cause a great deal of human suffering and economic loss, there is a shortage of effective vaccines. This invention relates to dengue virus mutations that may contribute to the development of improved dengue vaccines. Site directed and random mutagenesis techniques were used to introduce mutations into the dengue virus genome and to assemble a collection of useful mutations for incorporation in recombinant live attenuated dengue virus vaccines.

Major Neutralization Site of Hepatitis E Virus and Use of this Neutralization Site in Methods of Vaccination

Hepatitis E is endemic in many countries throughout the developing world, in particular on the continents of Africa and Asia. The disease generally affects young adults and has a very high mortality rate, up to 20%, in pregnant women. This invention relates to the identification of a neutralization site of hepatitis E virus (HEV) and neutralizing antibodies that react with it. The neutralization site is located on a polypeptide from the ORF2 gene (capsid gene) of HEV.

TMC1, a Deafness-Related Gene

Hearing loss is a common communication disorder affecting nearly 1 in 1,000 children in the United States alone, and nearly 50% of adults by the age of eighty. Hearing loss can be caused by environmental and disease-related factors; however, hearing loss due to genetic factors accounts for approximately 50% of cases.