Single domain CD4, HIV-1 Antibodies, and Fusion Proteins for treatment of HIV

Soluble forms of human CD4 (sCD4) inhibit HIV-1 entry into immune cells.  Different forms of sCD4 and their fusion proteins have been extensively studied in animal models and clinical trials as promising HIV-1 inhibitors. However, they have not been successful in clinical trials due to their transient efficacy.  sCD4 is also known to interact with class II major histocompatibility complex (MHCII) and, at low concentrations, could enhance HIV-1 infectivity. 

T Cell Receptors Targeting p53 Mutations for Cancer Immunotherapy and Adoptive Cell Therapy

The tumor protein p53 is a cell cycle regulator. It responds to DNA damage by triggering the DNA repair pathway and allowing cell division to occur or inducing cell growth arrest, cellular senescence, and/or apoptosis. p53 therefore acts as a tumor suppressor by preventing uncontrolled cell division. However, mutations in p53 that impair its cell cycle regulatory functions can induce uncontrolled cell division leading to cancer.

3D Vascularized Human Ocular Tissue for Cell Therapy and Drug Discovery

Degeneration of retinal tissues occurs in many ocular disorders resulting in the loss of vision. Dysfunction and/or loss of Retinal Pigment Epithelium Cells (RPE) and disruption of the associated blood retinal barrier (BRB) tissue structures are linked with many ocular diseases and conditions including: age-related macular degeneration (AMD), Best disease, and retinitis pigmentosa. Engineered tissue structures that are able to replicate the function of lost BRB structures may restore lost vision and provide insight into new treatments and mechanisms of the underlying conditions. 

Bone Marrow Mesenchymal Stem Cell (BMSC)-Derived Exosomes for the Treatment of Glaucoma

Glaucoma is one of the world’s leading causes of irreversible blindness. There is no cure and vision lost from glaucoma cannot be restored. Glaucoma is associated with fluid build-up in the eye resulting in an increased intraocular pressure (IOP). The pressure may cause damage to the optic nerve and lead to progressive degeneration of retinal ganglion cells (RGC) and vision loss. Currently, available treatments for glaucoma delay progression by reducing IOP, but no therapies exist to directly protect RGC from degradation and loss. 

Isotropic Generalized Diffusion Tensor MRI

Scientists at the Eunice Kennedy Shriver National Institute for Child Health and Human Development (NICHD) have developed a method implemented as pulse sequences and software to be used with magnetic resonance imaging (MRI) scanners and systems. This technology is available for licensing and commercial development. The method allows for measuring and mapping features of the bulk or average apparent diffusion coefficient (ADC) of water in tissue – aiding in stroke diagnosis and cancer therapy assessment.

AngleNav: Micro-Electro-Mechanical Systems (MEMs) Trackers to Facilitate Computed Topography (CT)-Guided Needle Puncture

Conventional free-hand needle puncture procedures for biopsy and other procedures, often rely on unguided manual movements to guide a needle to its destination. Freehand procedures risk missing the tumor, or accidental injury, such as puncturing a vital organ. Needle guidance systems may improve accuracy and reduce risks but available guidance technologies are cumbersome and expensive and may carry other risks.

Synthesis and Characterization of Bismuth Beads for Trans Arterial Chemo Embolization Under Computed Tomography (CT) Guidance

Existing microsphere technologies are used as therapy for certain cancers. The therapy is by way of occlusion, when the microspheres are delivered into blood vessels that feed a tumor. The physical dimensions of the microspheres occlude the blood supply and thus, killing the tumor. Some microspheres have also been modified to bind protein, elute drugs, and reduce inflammatory reactions as part of the therapy. However, one technical short-coming of existing microsphere technology is a limited capability to be visualized in real-time.

Learning to Read Chest X-Rays: Recurrent Neural Cascade Model for Automated Image Annotation

Medical image datasets are an important clinical resource. Effectively referencing patient images against similar related images and case histories can inform and produce better treatment outcomes. Labeling and identifying disease features and relations between images within a large image database has not been a task capable of automation. Rather, it is a task that must be performed by highly trained clinicians who can identify and label the medically meaningful image features.

Eye Tracking Application in Computer Aided Diagnosis and Image Processing in Radiology

Medical imaging is an important resource for early diagnostic, detection, and effective treatment of cancers. However, the screening and review processes for radiologists have been shown to overlook a certain percentage of potentially cancerous image features. Such review errors may result in misdiagnosis and failure to identify tumors. These errors result from human fallibility, fatigue, and from the complexity of visual search required.