Multi Protein Nanoparticle Monkeypox Vaccine
In 2022, the World Health Organization declared an atypical outbreak of monkeypox (Mpox), which has caused approximately 30,000 cases of Mpox infection within the United States as of April 2023. Mpox represents a current threat to public health, and there is an immediate need for an effective vaccine. To address this, NIAID has developed a vaccine approach comprising virus-like nanoparticles coated with modified Mpox proteins.
Hybridoma Cell Lines 2A4 And 5B12 Against Puromycin
Protein translation is a central cellular function attracting increasing attention from cell biologists as they integrate gene product specific information into a systems view of cellular function. Scientists at NIAID developed the puromycin-specific antibodies that allow for the specific detection of puromycin-containing nascent polypeptides via standard immunofluorescence or flow cytometry.
Francisella Lipids as Broad Anti-inflammatory Therapeutics
Anti-inflammatory treatments, particularly those used in the context of viral infection, have been shown to greatly inhibit the overall immune response, which can result in poor immunity and failure to control or clear the infection. Novel alternatives that can effectively attenuate inflammation without the more serious side effects of steroid medications (e.g., global immune suppression, muscle weakness, etc.) may have substantial use across a wide range of disease areas.
Dual-Germline Antibody Engager Chimeric HIV–1 Immunogens
Despite four decades of intensive research, a safe and effective HIV-1 vaccine remains elusive due to the extreme difficulty in eliciting broadly neutralizing antibodies (bNAbs), which recognize and block HIV-1 from entering healthy cells. Only rare natural HIV-1 envelopes (Envs) promote the activation and expansion of naive B cells expressing unmutated germline antibodies of various bNAb lineages, but they typically do so for a single lineage for the same neutralization site.
HLA-class II-restricted T Cell Receptors for PIK3CA “Hotspot” Mutations, E545K and N345K
Summary:
The National Cancer Institute (NCI) seeks co-development partners and/or licensees for a collection of T cell receptors (TCRs) that specifically target PIK3CA mutations to treat patients with tumors expressing these mutations in the context of HLA-DPA1*01:03:01, HLA-DPB1*04:01:01 or HLA-DRB1*04:01.
Description of Technology:
Next-Generation 5-HT-2B Serotonin-Receptor Antagonists for Anti-Fibrotic & Cardiopulmonary Therapy
This technology includes a family of small-molecule antagonists that selectively block the 5-HT2B serotonin receptor—an upstream driver of tissue-remodeling—to address fibrotic, cardiopulmonary and related disorders. Built on a conformationally-locked “(N)-methanocarba” nucleoside scaffold, the compounds show nanomolar potency, >30–400-fold selectivity over the closely related 5-HT2C receptor, and favorable oral bioavailability in rodents.
Bicistronic Chimeric Antigen Receptor (CAR) Constructs Targeting CD19 and CD20
CD19 and CD20 are promising targets for the treatment of B-Cell malignancies. Unfortunately, some clinical studies have shown that there is a loss of CD19 or CD20 expression in various cases of lymphomas and leukemias, particularly after treatment with an agent that targets CD19 (e.g., anti-CD19 CAR-T). However, studies have shown that expression of one protein is retained when the other is lost. This suggests that a therapeutic with the ability to simultaneously target both CD19 and CD20 could represent a solution to the drawbacks of current therapies.
Anti-SLAMF7 Chimeric Antigen Receptors
Immortalization of plasma cells leads to Multiple Myeloma (MM). Signaling Lymphocyte Activation Molecule F7 (SLAMF7) is highly expressed on the malignant plasma cells that constitute Multiple Myeloma. The expression of SLAMF7 by MM cells and lack of expression on nonhematologic cells makes SLAMF7 a promising target for chimeric antigen receptor (CAR) T cell therapies for the treatment of MM.
Optimized Monospecific or Bicistronic Chimeric Antigen Receptor (CAR) Constructs Targeting CD19 and CD20
Patients with chemotherapy-refractory, diffuse large B-cell lymphoma (DLBCL) have poor prognoses. CD19 and CD20 are promising targets for the treatment of B-Cell malignancies. However, despite the initial promising results from anti-CD19 CAR therapy, only 30-35% of patients with DLBCL achieve remissions lasting longer than 2-3 years after anti-CD19 CAR T-cell therapy. Relapse and non-response are likely due to diminished CD19 expression after anti-CD19 therapy and low expression of CD19 in some lymphomas.