Mitotic Figures Electronic Counting Application for Surgical Pathology

Cancer diagnosis depends on the assessment of patient biopsies to determine tumor type, grading, and stage of malignancy. Pathologists visually review specimens and count mitotic figures (MF) in a variety of cancer types to help gauge aggressiveness, guide treatment, and inform patient prognosis. Current technology for recording MF counts in surgical pathology is lacking in objectivity, and enumeration of MF by microscopy can be error prone. In particular, a lack of systematic means for recording contributes to recognized variability.

Induced Pluripotent Stem Cells Derived from Patients with CEP290-associated Ciliopathies and Unaffected Family Members

Approximately one-third of non-syndromic retinal dystrophies involve a defect in a ciliary protein. Non-syndromic retinal ciliopathies include retinitis pigmentosa, cone dystrophy, cone-rod dystrophy, macular dystrophy, and Leber-congenital amaurosis (LCA). Many CEP290-LCA patients also exhibit auditory and olfactory defects. Induced pluripotent stem cells (iPS) cells were derived from patients with LCA and unaffected relatives. 
The National Eye Institute (NEI) seeks research collaborations and/or licensees for the use of these iPS cells.

Inducible Activation Nucleic Acid Hybrid Switch for Conditional Generation of Oligonucleotides

Gene therapy research has yielded FDA-approved treatments for an array of diseases. However, challenges facing nucleic-acid based therapeutics include non-specific delivery and degradation of the nanoparticles. NCI investigators have developed a solution to address these challenges in their novel nucleic-based therapy based on the conditional activation strategy. 

Peptide Hydrogels for Rate-Controlled Delivery of Therapeutics

Hydrogels represent an attractive controlled drug-delivery system that have been used in various clinical applications, such as: tissue engineering for wound healing, surgical procedures, pain management, cardiology, and oncology. High-water content of hydrogels confers tissue-like physical properties and the crosslinked fibrillar network enables encapsulation of labile small molecule drugs, peptides, proteins, nucleic acids, proteins, nanoparticles, or cells.

A Novel Genetically Encoded Inhibitor of Hippo Signaling Pathway to Study YAP1/TAZ-TEAD Dependent Events in Cancer

The Hippo signaling pathway regulates a multitude of biological processes including cell proliferation, apoptosis, differentiation, tissue homeostasis, and stem cell functions. This axis has been recently listed as one of the top 10 signaling pathways altered in human cancer. Its role in modulating cell growth and proliferation is mediated by the activation of Yes-associated protein 1 (YAP1) and transcriptional co-activator with PDZ-binding domain (TAZ).

A Preclinical Model for Mutant Human EGFR-driven Lung Adenocarcinoma

Previously described epidermal growth factor receptor- (EGFR) driven tumor mouse models develop diffuse tumors, which are dissimilar to human lung tumor morphology and difficult to measure by CT and MRI scans. Scientists at the National Cancer Institute (NCI) have developed and characterized a genetically engineered mouse (GEM) model of human EGFR-driven tumor model (hEGFR-TL) that recapitulates the discrete lung tumor nodules similar to those found in human lung tumor morphology.

Molecular Classification of Primary Mediastinal Large B Cell Lymphoma Using Formalin-Fixed, Paraffin-Embedded Tissue Specimens

Primary mediastinal B-cell lymphoma (PMBCL) is an aggressive type of non-Hodgkin lymphoma that mostly occurs in people between the ages of 30-40. It accounts for 5-7% of all aggressive lymphomas. The diagnosis of PMBCL is challenging as the histological features of PMBCL overlap with diffuse large B-cell lymphoma (DLBCL), another most common type of non-Hodgkin lymphoma. Available evidence suggests that PMBCL responds much more favorably to the DA-EPOCH-R chemotherapy regimen than to the standard R-CHOP regimen used to treat DLBCL.

A Preclinical Orthotopic Model for Glioblastoma Multiforme that Represents Key Pathways Aberrant in Human Brain Cancer

Current therapies for glioblastoma multiforme (GBM), the highest grade malignant brain tumor, are mostly ineffective, and better preclinical model systems are needed to increase the successful translation of drug discovery efforts into the clinic. Scientists at the National Cancer Institute (NCI) have developed and characterized an orthotopic genetically engineered mouse (GEM)-derived model of GBM that closely recapitulates various human GBM subtypes and is useful for preclinical evaluation of candidate therapeutics.