TRIAZOLE DERIVATIVES AS P2Y14 RECEPTOR ANTAGONISTS

The technology describes the composition of small molecule compounds that are antagonists of the P2Y14 receptor. Also provided are methods of using the compounds, including a method of treating a disorder, such as inflammation, diabetes, insulin resistance, hyperglycemia, a lipid disorder, obesity, a condition associated with metabolic syndrome, and asthma, and a method of antagonizing P2Y14 receptor activity in a cell.

P2Y14 Receptor Antagonists Containing A Biaryl Core

The technology discloses composition of compounds that fully antagonize the human P2Y14 receptor, with moderate affinity with insignificant antagonism of other P2Y receptors. Therefore, they are highly selective P2Y14 receptor antagonists. Even though there is no P2Y14 receptor modulators in clinical use currently, selective P2Y14 receptor antagonists are sought as potential therapeutic treatments for asthma, cystic fibrosis, inflammation and possibly diabetes and neurodegeneration.

COMBINATION THERAPIES FOR COVID-19 (SARS-COV-2)

The coronavirus disease 2019 (COVID-19) is caused by a novel RNA enveloped coronavirus, SARS-CoV-2 when the virus enters human airway cells via an ACE2-mediated entry process. This entry pathway is facilitated by the cell surface heparan sulfate proteoglycan (HSPG), which enhances viral attachment to the cell surface. Researchers at NIDDK and NCATS have discovered a collection of FDA-approved drugs that can interfere with the entry of SARS-CoV-2. These drugs can be grouped into three classes based on the distinct steps in the viral entry pathway that they target.

Reducing Bloodstream Neutrophils as a Treatment for Lung Infection and Inflammation

During lung infection, bloodstream neutrophils (PMNs) responding to infection travel to the airspace lumen. Although successful arrival of microbicidal PMNs to the airspace is essential for host defense against inhaled pathogens, excessive accumulation of PMNs in the lung contributes to the pathogenesis of several prevalent lung disorders, including acute lung injury, bronchiectasis, and COPD. Unfortunately, there is no treatment for controlling PMN accumulation in the lung.

Hybridomas to Human Immunoglobulins for SARS-CoV-2 Diagnostics and Additional Indications

Immunoglobulins play a key role in the immune system. CDC has developed and tested hybridoma cell lines (monoclonal antibody (mAb) clones) for human IgG and other immunoglobulins. The mAbs generated from those hybridomas could be used as a reagent (second Ab) of anti-human immunoglobins in a diagnostic assay for SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), the virus that causes COVID-19 (coronavirus disease 2019) and other assays that detect antigen specific antibodies from human sera.

Diagnostic Assay to Detect Group C Rotavirus in Humans and Animals—Monoclonal Antibody-based ELISA (Enzyme-linked Immunosorbent Assay)

Rotaviruses cause severe gastroenteritis in humans and animals globally. Currently, there are eight known serogroups (A-H) of rotaviruses. Group C rotavirus (GpC RV) causes sporadic cases and outbreaks of acute diarrhea in children and adults worldwide. GpC RV is also associated with diarrhea in swine. Currently, no simple and reliable diagnostic test exists for GpC RV, so disease prevalence remains unknown.

Real-time Cellular Thermal Shift Assay and Analysis (RT-CETSA) for Research and Drug Discovery

Scientists at NCATS have developed a novel Cellular Thermal Shift Assay (CETSA), named “Real-time CETSA” in which temperature-induced aggregation of proteins can be monitored in cells in real time across a range of compound concentrations and simultaneously across a temperature gradient in a high-throughput manner. Real-time CETSA streamlines the thermal shift assay and allows investigators to capture full aggregation profiles for every sample.

Methotrexate Analogs with Enhanced Efficacy and Safety Profile

Scientists at NCATS have developed an analog of Methotrexate (MTX) that incorporates the proteasome-targeting properties of E3-ubiquitin ligase small molecule ligands (MTX-PROTACs) to directly bind to the MTX target dihydrofolate reductase (DHFR) and mark the protein for proteasomal degradation. This unique property may dramatically lower the therapeutic dose required in a treatment setting.