Camel VHH Nanobodies Bind the S2 Subunit of SARS-CoV-2 and Broadly Neutralize Variants including Omicron

Since its emergence in 2019, COVID-19 infected over 600 million people and over 6 million people have died from the disease. COVID-19 is an infectious disease caused by the SARS-CoV-2 virus. Neutralizing antibodies have been developed to bind to the receptor binding domain (RBD) on the spike (S) protein. Blocking the interaction of the RBD and the ACE2 receptor, is critical in neutralizing the virus. However, the S2 subunit, is also critical for viral infection and entry into human cells.

Novel Antigen for Use as Vaccine Against Nematode Infection

This invention describes a new vaccine against Strongyoides stercoralis, which establishes a parasitic infection that affects an estimated 100-200 million people worldwide. The potential for fatal disease associated with S. stercoralis infection and the difficulty in treating hyperinfection underscores the need for prophylactic vaccines against the disease. This vaccine uses S. stercoralis immunoreactive antigen (SsIR); a novel antigen capable of providing 70-90 % protection for mice immunized with the antigen.

Diagnostic Assays and Methods of Use for Detection of Filarial Infection

The effort targeting the mosquito borne neglected tropical disease lymphatic filariasis for elimination through mass drug administration by 2020 will require accurate, cost effective methods for detecting early infections. The World Health Organization-recommended immunochromatographic test detects adult Wuchereria bancrofti (Wb) antigen in blood, but shows variable efficacy due to the complex life cycle of the parasites and cross reactivity with other organisms. This variability may hinder effective lymphatic filariasis elimination efforts.

Antibodies and Methods for the Diagnosis and Treatment of Epstein-Barr Virus Infection

According to the World Health Organization, over 90% of the worldwide population is infected with Epstein-Barr virus by adulthood. In most cases, the disease accompanying initial infection is subclinical though some individuals who are infected as adolescents or adults do experience infectious mononucleosis. However, once infected, individuals carry latent EBV for their remaining lifespan. In such individuals, immune suppression can result in reactivation of the EBV and consequently, EBV-associated lymphoproliferative disease.

Compositions and Methods for Detecting Loa loa

Loa loa is a filarial nematode estimated to infect 3-13 million people in Central and Western Africa. In parts of Africa, mass administration of ivermectin is common for onchocerciasis and lymphatic filariasis control. However, some individuals infected with Loa loa microfilariae in high densities are known to experience post-ivermectin severe adverse events, such as encephalopathy, coma, or even death. Therefore, diagnostic tools that can accurately identify and differentiate Loa loa microfilariae from other filarial infections are needed.

Humanized Monoclonal Antibodies Specific Against Human Soluble Tissue Factor (hsTF) as Diagnosis, Prevention and Therapeutic Agents for Thrombosis

Summary:

The National Cancer Institute (NCI) seeks research co-development partners and/or licensees for a novel humanized monoclonal antibody (58B3) that selectively targets a newly identified soluble Tissue Factor (sTF) to diagnose, prevent and treat pathological thrombosis associated with inflammation, viral/bacterial infection, sepsis and cancer – without affecting normal hemostasis.

Novel Human Immunogenic Epitopes of the Human Endogenous Retrovirus ERVMER34-1

Summary:

The National Cancer Institute (NCI) seeks research co-development partners and/or licensees for the clinical translation of novel peptide-based therapeutic cancer vaccines derived from ERVMER34-1, a human endogenous retrovirus (HERV) antigen, offering a unique opportunity to address a significant unmet need in the treatment of various carcinomas.

Identification and Characterization of HLA-A24 Agonist Epitopes of MUC1 Oncoprotein

Summary:

The National Cancer Institute (NCI) seeks co-development partners and licensees for a human cytotoxic T lymphocyte agonist epitope from the C-terminal subunit of mucin 1 (MUC1-C), which can be used as a peptide, polypeptide (protein), in a cancer vaccine or T-cell targeted therapy to target many tumor types.