Oxynitidine Derivatives Useful as Inhibitors of Topoisomerase IB (TOP1) and Tyrosyl-DNA Phosphodiesterase 1 (TDP1) for Treating Cancer

Summary: 

The National Cancer Institute (NCI) is actively seeking potential licensees and/or co-development research collaboration partners interested in advancing oxynitidine derivatives as novel inhibitors of topoisomerase IB (TOP1) and tyrosyl-DNA phosphodiesterase 1 (TDP1) for cancer treatment. These TOPI and TDP1 inhibitors, when administered together, demonstrate enhanced anti-tumor efficacy.

Description of Technology: 

Methods of Detecting Loss of Heterozygosity and Damaging Mutations in Immune-Related Genes Using Liquid Biopsies

Summary: 
The National Cancer Institute (NCI) seeks co-development partners and/or licensees for a liquid biopsy diagnostic assay capable of detecting loss of heterozygosity (LOH) and somatic mutations in genes important for antigen processing and presentation and interferon-γ response pathways.

Method of Detecting Circulating Cell-Free HPV 6 and 11 DNA in Patients Afflicted With Diseases Caused by Chronic HPV 6 or 11 Infection and Use Thereof

Summary:

The National Cancer Institute (NCI) and Frederick National Laboratory for Cancer Research (FNLCR) seek research co-development partners and/or licensees for commercial development of a novel liquid biopsy diagnostic for non-invasive detection of cell-free HPV 6 and 11 DNA for recurrent respiratory papillomatosis (RRP).

A Key Advancement for Human Norovirus Research and Reverse Genetics

The HEK293T/T7 cell line is a novel development in virology research, particularly for studying human noroviruses. This cell line expresses the T7 RNA polymerase, a key enzyme used in reverse genetics systems. Unlike existing technologies, the HEK293T/T7 cell line offers the unique advantage of being able to produce functional T7 RNA polymerase, which is essential for driving transcription from T7 promoters.