A Novel Optomechanical Module that Enables a Conventional inverted Microscope to Provide Selective Plane Illumination Microscopy (iSPIM)

The invention describes an optomechanical module that, when engaged with a conventional inverted microscope, provides selective plane illumination microscopy (iSPIM). The module is coupled to the translational base of the microscope whereby a SPIM excitation objective is engaged to one portion of the mount body, and a SPIM detection objective (having a longitudinal axis perpendicular to that of the excitation objective) is engaged to another portion of the mount body.

Diagnostic Assays and Methods of Use for Detection of Filarial Infection

The effort targeting the mosquito borne neglected tropical disease lymphatic filariasis for elimination through mass drug administration by 2020 will require accurate, cost effective methods for detecting early infections. The World Health Organization-recommended immunochromatographic test detects adult Wuchereria bancrofti (Wb) antigen in blood, but shows variable efficacy due to the complex life cycle of the parasites and cross reactivity with other organisms. This variability may hinder effective lymphatic filariasis elimination efforts.

Fast Acting Molecular Probes for Real-Time In Vivo Study of Disease and Therapeutics

This technology is for fast acting molecular probes made from a fluorescent quencher molecule, a fluorophore, an enzyme cleavable oligopeptide (for example targeted by protease) and FDA-approved polyethylene glycol (PEG) as well as associated methods to identify cell activity with these probes. Proteases regulate many cell processes such as inflammation as well as pathological processes in cancer and cardiovascular disease. High protease activity is associated with metastatic cancers. Proteases are also active in apoptosis, and tissue remodeling in cardiovascular disease.

Salen-Manganese Compounds for Therapy of Viral Infections

Salen-manganese compounds are synthetic, stable, low toxicity, low cost agents that may provide protection from immune reaction-related oxidative cell damage associated with many illnesses. In particular, oxidative cell damage has been associated with many viral infections including influenza. This invention demonstrates that treating mice with salen-manganese compounds, after lethal pandemic influenza virus infection, significantly enhances survival. Salen-manganese treatment also reduces lung pathology and also improved cellular recovery and repair.

Novel Tocopherol and Tocopheryl Quinone Derivatives as Therapeutics for Lysosomal Storage Disorders

Novel tocopherol derivatives and tocopheryl quinone derivatives useful in the decrease of lysosomal substrate accumulation, the restoration of normal lysosomal size, and the treatment of lysosomal storage disorders (LSDs) are provided. The inventors have discovered that tocopherol and tocopheryl quinone derivatives with side chain modifications (such as terminal tri-halogenated methyl groups) exhibit improved pharmacokinetics, modulation of mitochondrial potential and restoration of some LSDs phenotypes.

Device for Non-Surgical Tricuspid Valve Annuloplasty

This is a non-surgical tricuspid annuloplasty to treat functional tricuspid valve regurgitation, meaning regurgitation with intact valve leaflets. The device is delivered using novel catheter techniques into the pericardial space and positioned along the atrioventricular groove. A compression member is positioned along the tricuspid annular free wall and tension applied through a variably-applied tension element. In the best embodiment, the compression member has an M shaped portion with at least two inflection points between the segments of difference curvatures.

Monoclonal Antibodies That Recognize the Human Type I Interferon Receptor and Block Interferon Signaling

Type I interferons play a critical role in both innate and adaptive immunity through the stimulation of the IFNAR1 which initiates interferon signaling in response to viral and bacterial infections. However, abnormal interferon signaling is associated with human diseases, such as lupus. The present invention discloses six hybridomas that produce mouse monoclonal antibodies specific for the extracellular domain of human IFNAR1. Two of the monoclonal antibodies are able to bind IFNAR1 and reduce interferon signaling.