Clinical Outcome Predictors for Mantle Cell Lymphoma

Mantle cell lymphoma (MCL) is a group of aggressive B-cell lymphomas displaying heterogeneous outcomes after treatment.  Some patients have the slowly progressing disease that does not require immediate treatment, while others have a disease that rapidly progresses despite highly aggressive treatment. A number of prognostic tools have been described to determine whether patients have slow or rapidly progressing diseases, including the mantle cell lymphoma International Prognostic Index (MIPI) and biomarkers, such as KI-67.

Cancer Therapeutic Based on Hypoxia Inducible Factor 1 (HIF-1) Inhibitors

Hypoxia is a characteristic of many solid tumors resulting from accelerated cellular proliferation and inadequate vascularization. HIF-1 is a transcription factor critical for maintaining cellular homeostasis in, and adaptively responding to, low oxygen environments. HIF-1 becomes activated through binding to the transcriptional co-activator protein p300. Disruption of the HIF-1/p300 interaction could potentially modulate HIF-1 activity.

Chimeric Antigen Receptors that Recognize Mesothelin for Cancer Immunotherapy

Chimeric antigen receptors (CARs) with high affinity for mesothelin that can be used as an immunotherapy to treat cancers that express mesothelin, such as pancreatic cancer, ovarian cancer, and mesothelioma. The technology includes CAR constructs with one of three different mesothelin-specific antibody portions, including either the mouse-derived SS or SS1 antibody fragments or the human HN1 antibody fragment.

Immunogenic Antigen Selective Cancer Immunotherapy

Melanoma is a particularly aggressive form of cancer primarily caused by over-exposure to sunlight.  Although melanoma can strike at any age, the malignancy disproportionately impacts persons of advanced age, as these individuals often have decades of repeated exposure to harmful levels of ultraviolet radiation.  Scientists at NIH among others have clarified the link between advanced melanoma and other malignancies and expression of SPANX-B.

Use of a Modified Adaptor Molecule LAT to Improve Immunotherapy for Cancer and Other Diseases

One problem with the development of immunotherapy for cancer or other diseases is the inability to stimulate a sufficient immune response in patients to tumor associated antigens. The Linker Adapted for T Cell Signaling molecule (LAT) has been shown to be an important molecule in T cell signaling. The inventions described and claimed in this patent application illustrate a new supportive role for LAT which may be harnessed to improve a patient's immune response to tumor-associated antigens.

Multi-epitope Vaccines against TARP (ME-TARP) for Treating Prostate and Breast Cancer

The development of more targeted means of treating cancer is vital. One option for a targeted treatment is the creation of a vaccine that induces an immune response only against cancer cells. In this sense, vaccination involves the introduction of a peptide into a patient that causes the formation of antibodies or T cells that recognize the peptide. If the peptide is from a protein found selectively on/in cancer cells, those antibodies or T cells can trigger the death of those cancer cells without harming non-cancer cells. This can result in fewer side effects for the patient.

A Rapid Method of Isolating Neoantigen-specific T Cell Receptor Sequences

Tumors can develop unique genetic mutations which are specific to an individual patient. Some of these mutations are immunogenic; giving rise to autologous T cells which are tumor-reactive. Once isolated and sequenced, these neoantigen-specific TCRs can form the basis of effective adoptive cell therapy cancer treatment regimens; however, current methods of isolation are inefficient. Moreover, the process is technically challenging due to TCR sequence diversity and the need to correctly pair the a and b chain of each receptor.