Human and Veterinary Cancer Therapeutic Agent Utilizing Anthrax Toxin-Based Technology

Due to the disorganized nature of blood vessels that run through tumors, chemotherapeutic agents often fail to penetrate tumors and kill cancer cells at the tumor’s center. This can lead to ineffective chemotherapeutic treatments, because tumors can quickly grow back if the entire tumor is not destroyed. NIH researchers have developed a therapeutic agent that solves this problem facing current chemotherapy treatments.

Monoclonal Antibody Specific for DNA/RNA Hybrid Molecules

NIAID has a hybridoma available for non-exclusive licensing that produces a monoclonal antibody specific for DNA/RNA hybrids. This antibody, which has been extensively characterized by NIH researchers, is already a widely-used research tool. It is currently the only monoclonal antibody available that is specific for DNA/RNA hybrids, making it a unique reagent. It is used in immuno-fluorescence (IF) microscopy, where it can be used to detect sites of transcriptional activity and potentially sites of viral replication.

A Novel Thermal Method to Inactivate Rotavirus for Use in Vaccines

Rotavirus is a highly contagious, diarrhea-inducing pathogen that annually causes approximately 250,000 deaths worldwide and millions of hospitalizations, especially afflicting infants and young children. One strategy to combat this virus is through vaccination. Continuing safety and efficacy concerns with the currently existing live, oral vaccines against rotavirus have led researchers to search for alternative treatment approaches, such as vaccines containing inactivated rotavirus.

Substituted Quinoline Analogs as Aldehyde Dehydrogenase 1A1 (ALDH1A1) Inhibitors

Aldehyde dehydrogenase enzymes (ALDHs) have a broad spectrum of biological activities through the oxidation of both endogenous and exogenous aldehydes. Unbalanced biological activity of ALDHs has been associated with a variety of disease states such as alcoholic liver disease, Parkinson’s disease, obesity, and Cancer. Increased expression of ALDH1A1 has been identified in a wide-range of human cancer stem cells and is associated with cancer relapse and poor prognosis, raising the potential of ALDH1A1 as a therapeutic target.

Protein Nanoparticles for Antigen Display in Vaccines

The technology relates to a protein-based nanoparticle platform that allows presentation of immunogenic molecules such as influenza virus antigens. This protein platform is made up of hepatitis B capsid/core proteins. The core proteins contain immunogenic loop c/e1, where other antigens can be inserted and the chimeric protein retains the ability to form capsid-like particles. The technology describes the insertion of one or more copies of influenza epitopes derived from the globular head or the stem region of hemagglutinin protein into or around the c/e1 loop of the core protein.

Prefusion Coronavirus Spike Proteins and Their Use

Coronaviruses (CoVs) can cause severe respiratory disease with high fatality rates in humans. The 2002-2003 SARS-CoV epidemic resulted in 8098 cases and 744 deaths, and MERS-CoV, which emerged in 2012, has resulted in 2144 cases and over 750 deaths as of March 2018. Currently, there are no effective prophylactic or therapeutic measures, and because other CoVs are poised to emerge as new human pathogens, there is a need to define a general CoV vaccine solution.

Novel Magnetic Resonance Spectroscopy (MRS) Technique to Quantify Brain Metabolites

With respect to quantification of metabolites in the brain, conventional methods of magnetic resonance spectroscopy (MRS) yield results that are highly variable and highly dependent on the sequence type being applied. This invention describes a novel MRS technique that involves preparing longitudinal steady states at different flip angles using trains of RF pulses interspersed with field gradients to quantify metabolites.

Novel Peptide of <em>Streptococcus pneumoniae</em> Surface Adhesion A (PsaA) Protein Associated with Adherence and Uses Thereof – for Vaccine Candidate, Therapeutic and Diagnostic Development

Streptococcus pneumoniae (S. pneumonia), bacteria commonly referred to as pneumococcus, are a significant cause of disease resulting in 1.5 million deaths every year worldwide according to the World Health Organization. The major types of pneumococcal disease are pneumonia (lung infection), bacteremia (bloodstream infection), and meningitis (infection of the tissue covering of the brain and spinal cord). Less severe pneumococcal illnesses include ear and sinus infections.

The CDC 2009 Influenza A H1N1 (Flu) Pandemic Real-time RT-PCR Panel including Pandemic Influenza A and Pandemic H1 Assays

CDC researchers have developed probes and primers for detecting the 2009 pandemic influenza A H1N1 virus in patient samples using real-time reverse transcription-polymerase chain reaction (rRT-PCR) methods. These primers and probes were originally developed in 2009 and were cleared by the FDA as part of a domestic human diagnostic testing panel in June 2010. These were also updated to increase specificity and/or sensitivity of the detection methods.