A Machine Learning Strategy to Improve the Fidelity of Imaging Time-Varying Signals to Improve Clinical Imaging
This technology includes a new technique to improve the fidelity of time-varying signals acquired in the dynamic contrast enhanced (DCE) imaging. This technique enhances the time-varying signals in a given DCE image series through deep convolutional neural networks (CNN) to learn the relationship of signal versus contrast concentration from other series of different contrast doses.