A Novel Virus-Based Expression System
Currently available poxvirus vectors for humans and other animals exhibit suboptimal expression of recombinant gene(s) and high expression of vector proteins which causes weak immunogenicity and high anti-vector immune response.
pLAS-1 Plasmid
WR (Western Reserve) Strain of Vaccinia Virus with K151E Mutation in A34R Gene
Recombinant Sulfated HIV Envelope Protein and Methods for Making Protein
Next-Generation 5-HT-2B Serotonin-Receptor Antagonists for Anti-Fibrotic & Cardiopulmonary Therapy
This technology includes a family of small-molecule antagonists that selectively block the 5-HT2B serotonin receptor—an upstream driver of tissue-remodeling—to address fibrotic, cardiopulmonary and related disorders. Built on a conformationally-locked “(N)-methanocarba” nucleoside scaffold, the compounds show nanomolar potency, >30–400-fold selectivity over the closely related 5-HT2C receptor, and favorable oral bioavailability in rodents.
Humanized Mouse Model to Study Mesothelin (MSLN) -targeted Cancer Therapeutics: Bl6/TPO Mice
Mesothelin (MSLN) is an antigen highly expressed in several human cancers including mesotheliomas, ovarian cancers and pancreatic cancers. As such, human MSLN (hMSLN) is a target for many anti-cancer drugs. Most therapeutics targeting hMSLN do not recognize the mouse isoform of MSLN (mMSLN) and therefore cannot be tested in mouse cancer models.
Epstein-Barr Virus (EBV)-feeder Cell Line
This technology includes irradiated Epstein-Barr virus-transformed lymphoblastoid cell lines (EBV-LCL) as feeder cells for the ex vivo expansion of natural killer (NK) cells. EBV-LCL feeder cells, altered by radiation to prevent uncontrolled growth, provide a supportive environment for NK cells to multiply effectively. This method addresses the challenge of obtaining sufficient quantities of functionally active NK cells, which are crucial components of the immune system known for their ability to target and destroy tumor cells and virally infected cells.
Blocking CD38 using Protein G Complexed Daratumumab Antibodies (PGDARA) to Protect Natural Killer Cells from Daratumumab-induced Apoptosis and Cell Death for the Treatment of Multiple Myeloma
This technology includes the method of blocking CD38 in expanded natural killer (NK) cell therapy in combination with daratumumab in patients with multiple myeloma. Our in vitro studies have already confirmed the addition of NK cells to myeloma cells that have been exposed to daratumumab enhances myeloma killing compared to single agent treatment.
Human Monoclonal Antibodies to Generate Chimeric Antigen Receptor (CAR) T-cells to Treat Patients with Advanced Clear Cell Renal Cell Carcinoma (ccRCC).
This technology includes six human monoclonal antibodies (mAbs) that target tumor antigens derived from the CT-RCC HERV-E (human endogenous retrovirus type E) to generate Chimeric Antigen Receptor (CAR) T cells to treat patients with advanced clear cell renal cell carcinoma (ccRCC). These mAbs were identified from Adagene Inc’s human antibody phage library, and data show that majority of these mAbs only bind to CT-RCC HERV-E+ ccRCC cells, which express TM but not CT-RCC HERV-E non-expressing ccRCC cells nor non-RCC cells.