A Mouse Model for Systemic Inflammation in Glucocerebrosidase-Deficient Mice with Minimal Glucosylceramide Storage

Gaucher disease, the most common lysosomal storage disease, is an inherited metabolic disorder in which harmful quantities of the lipid glucocerebroside accumulate in the spleen, liver, lungs, bone marrow and in rare cases in the brain, due to a deficiency of the enzyme glucocerebrosidase (Gba) that catalyses the first step in the biodegradation of glucocerebrosides. Type 1 Gaucher disease is the most common and is distinguished from the other forms of the disease, types 2 and 3, by the lack of neurologic involvement.

A Mouse Model for Type 2 Diabetes

Diabetes affects over 120 million people worldwide (16 million in the US) and is a major health problem with associated health costs estimated at almost $100 billion dollars. Type 2 diabetes affects as many as 10% of the population of the Western World (with 15 million patients in the US alone) and arises from a heterogeneous etiology, with secondary effects from environmental influences. Risk factors for type 2 diabetes include obesity, high blood pressure, high triglycerides and age.

Rapid and Sensitive Detection of Nucleic Acid Sequence Variations

The ability to easily detect small mutations in nucleic acids, such as single base substitutions, can provide a powerful tool for use in cancer detection, perinatal screens for inherited diseases, and analysis of genetic polymorphisms such as genetic mapping or for identification purposes. Current approaches make use of the mismatch that occurs between complimentary strands of DNA when there is a genetic mutation, the electrophoretic mobility differences caused by small sequence changes, and chemicals or enzymes that can cleave heteroduplex sites.

Autodock Vina Software Process for Efficient Large-Scale Cognate Ligand Screening

The invention pertains to software processes, additions, and docking approaches to Autodock Vina that speeds the rate and efficiency of analyzing ligand interactions with a receptor by cognate ligands and rewards conformations in the scoring algorithm for residue interactions that are based on the biological data. The score is multiplied by a weighting factor to control the degree of ligand-residue interactions that are considered. This multiplier is then added to the docking score for confirmation.

Generation of Smad3-null Mice and Smad4-conditional Mice

SMADs are a novel set of mammalian proteins that act downstream of TGF-beta family ligands. These proteins can be categorized into three distinct functional sets, receptor-activated SMADs (SMADs 1,2,3,5, and 8), the common mediator SMAD (SMAD 4), and inhibitory SMADs (SMADs 6 and 7). SMAD proteins are thought to play a role in vertebrate development and tumorigenesis.

A Novel Strategy to Produce 6-cys Proteins Based on Pfs230D1 Domain Fusions

The Plasmodium parasite has a complex lifecycle during human infection and in the mosquito vector. Most advanced malaria vaccine candidates can confer only partial, short-term protection in malaria-endemic areas. A means of breaking the transmission of malaria to subsequent individuals could prevent a significant amount of human disease.

The primary embodiments of this technology are novel compositions of matter that produce enhanced transmission-blocking responses over current transmission blocking vaccines:

Generation of Artificial Mutation Controls for Diagnostic Testing

This technology relates to a method of generating artificial compositions that can be used as positive controls in a genetic testing assay, such as a diagnostic assay for a particular genetic disease. Such controls can be used to confirm the presence or absence of a particular genetic mutation. The lack of easily accessible, validated mutant controls has proven to be a major obstacle to the advancement of clinical molecular genetic testing, validation, quality control (QC), quality assurance (QA), and required proficiency testing.

Entangling/Entrapping Synthetic Setae for Control of Insects and Other Pests

In nature, some beetle larvae possess specialized barbed hastate setae that serve as an entanglement defense mechanism and incapacitate other insects. CDC researchers have developed synthetic setae for control and entrapment of insects and other pests. While smaller synthetic setae can trap mosquitoes and small insects, larger “macro” setae can be used for entrapment of bats, rodents, etc. Once used, the setae can be "reset" by a vigorous shaking of the fabric.

A Simple Colorimetric Assay for Anti-malarial Drugs Quality Assurance and Rapid, On-site Counterfeit Detection

This CDC assay aims to lessen the anti-malarial drug counterfeiting epidemic by testing for the artemisinin-type drugs (the active compound), through the use of a simple, inexpensive colorimetric test. Poor quality and counterfeit drugs pose an immediate threat to public health and undermine malaria control efforts, resulting in resistant-parasites and invalidates effective compounds, i.e.