Systemic CRISPR Therapy for the Treatment of Inherited Diseases

This technology includes novel systemic adeno-associated virus (AAV)-mediated CRISPR gene therapy technology. While some diseases (e.g., retinal diseases) can be treated through local gene transfer, many diseases such as Duchenne Muscular Dystrophy (DMD) require systemic therapy. The CRISPR technology has two components, the Cas9 endonuclease, and the gRNA. To explore systemic CRISPR therapy, we co-delivered the AAV.Cas9 and AAV.gRNA vector to mdx mice, a mouse DMD model. Direct delivery to muscle yielded efficient gene correction.

Sensor and Device for Real-Time Discovery of Metabolites in Blood for Disease Detection, Monitoring and Control

This technology includes device and sensor selection for the detection of blood metabolites which can be used to diagnose and monitor diseases in real-time. Currently the monitoring of metabolite levels is performed with specialized mass spectrometry instrumentation, therefore patient quality-of-life and financial advantages exist to develop devices capable of detecting metabolites in real-time.

Sensor for Real-time Detection of Plasma Metabolites Levels for the Diagnosis and Care of Metabolic Disorders

This technology includes the development of devices capable of real-time evaluation of metabolite levels for the treatment of numerous metabolic disorders, including hyperammonemia and aminoacidopathies. Currently, the monitoring of metabolite levels is done in a hospital setting with specialized mass spectrometry instrumentation. As a consequence, susceptible patients who are undergoing a crisis need to visit the hospital for testing to determine if there is a metabolite disturbance.

Treatment of primary hyperoxalurias with small molecule lactate dehydrogenase inhibitors such as WO2018005807A1

This technology includes the use of novel lactate dehydrogenase (LDH) inhibitors, including WO2018005807A1, for the treatment of primary hyperoxalurias (PHs). PHs are rare autosomal recessive disorders caused by overproduction of oxalate, leading to recurrent calcium oxalate kidney stone disease, and in some cases end-stage renal disease. One potential strategy to treat PHs is to reduce the production of oxalate by diminishing the activity of LDH, the proposed key enzyme responsible for converting glyoxylate to oxalate.

A Novel High-Throughput Assay for Identifying Zike Virus NS2B-NS3 Protease Inhibitors

This invention includes a novel high-throughput assay to identify orthosteric inhibitors blocking the Zika virus NS2B-NS3 protease. Pathogenic flaviviruses, including Zika, require the NS2B-NS3 protease for viral replication. There is currently an unmet need for specific antiviral therapeutics against the Zika virus. Preliminary screening using the NCGC Pharmaceutical Collection library identified a group of drugs including temoporfin, erythrosin B, niclosamide, and nitazoxanide that can significantly inhibit the interactions between NS2B and NS3.

A Group of Compounds that Activate AMP-activated protein kinase (AMPK) that may Treat Niemann-Pick Disease Type C (NPC)

This technology relates to the identification and use of a group of compounds that activate the AMP-activated protein kinase (AMPK) and also effectively reduce lysosomal cholesterol accumulation in patients with Niemann-Pick disease Type C (NPC). Clinical trials are currently underway to determine the efficacy of beta-cyclodextrin in treating patients with NPC. A potential mechanism has been proposed indicating that beta-cyclodextrin activated AMP-activated protein kinase, leading to restoration of autophagy in cells from NPC patients.

Repurposed Use of the Alkaloids Emetine and Cephaeline to Treat Zika Virus Infection

This technology includes the use of two related compounds, Emetine and Cephaeline, as a potent inhibitor of the Zika virus (ZIKV). Emetine and it's analog Cephaeline were identified in a high-throughput assay aimed at identifying anti-ZIKV compounds. Both Emetine and Cephaeline are potent inhibitors of ZIKV infection in cell culture, and Emeline is a potent inhibitor of ZIKV infection in a live mouse model.

Novel ACRV1/ALK2 Inhibitors and Methods for Inhibiting BMP Signaling for the Treatment of Fibrodysplasia Ossificans Progressiva (FOP)

This technology includes the identification and use of novel ACRV1/ALK2 inhibitors for the treatment of fibrodysplasia ossificans progressiva (FOP), an autosomal-dominant rare disease that affects one person in every 1-2 million. FOP is characterized by malformation of the great (big) toes during embryonic development and by progressive heterotopic endochondral ossification (HEO) postnatally, which leads to the formation of a second skeleton of heterotopic bone.

Repurposing CDK Inhibitors for the Treatment of Zika Virus Infection

This invention includes the discovery and use of a group of CDK inhibitors that were found during a drug repurposing screen designed to find compounds that inhibit Zika virus caused cell death. The identified CDK inhibitors have all previously been used in clinical trials for other diseases, potentially reducing the long time course needed for new drug discovery and development.

Monoclonal Antibodies for the Recognition of Oncogene Fusions and Alveolar Rhabdomyosarcoma (ARMS) Diagnosis

This technology includes monoclonal antibody (mAb) that binds to the junction region of the PAX3-FOXO1 and PAX7-FOXO1 fusion protein for the diagnosis of Alveolar Rhabdomyosarcoma (ARMS). Specifically, two monoclonal antibodies (PFM.1 and PFM.2) have been isolated that recognize the 92kDa bands found uniquely to the pediatric striated muscle tumors of the type Alveolar Rhabdomyosarcoma (ARMS) carrying the characteristic t(2;13)(q35;q14) or t(1;13)(p36;q14) chromosomal translocations.