Methods of Producing Effective T-cell Populations Using Akt Inhibitors

Adoptive cell therapy (ACT) uses cancer reactive T-cells to effectively treat patients. However, several obstacles inhibit the successful use of ACT for cancer treatment.  Current approaches for the expansion of T-cells may produce T-cells with a terminally differentiated phenotype that is associated with diminished anti-tumor activity and poor capacity for long-term persistence. Thus, there is a need for improved methods of obtaining an isolated population of effective T-cells for ACT. 

A New Class of Stable Heptamethine Cyanine Fluorophores and Biomedical Applications Thereof

Heptamethine cyanines are among the most widely used near-IR fluorophores. The near-IR range (between about 650 nm and 900 nm) is very useful for imaging applications due to the absence of background autofluorescence. Despite extensive use, many of these fluorophores suffer from chemical instability. Specifically, most of the current and commonly used fluorophores undergo a phenoxy to thiol exchange reaction in the presence of primary thiols. This exchange reaction is problematic during conjugation reactions of cysteine containing macromolecules.

A Sensitive, High Throughput Pseudovirus-Based Papillomavirus Neutralization Assay for HPV 16 and HPV 18

Human Papilloma Viruses (HPV) is a very common virus; nearly 80 million people—about one in four—are currently infected in the United States. HPV is a group of more than 150 related viruses. Each HPV virus in this large group is given a number which is called its HPV type. HPV is named for the warts (papillomas) some that HPV types can cause. Some other HPV types can lead to cancer, especially cervical cancer.

A549 Cells: Lung Carcinoma Cell Line for Adenovirus

Scientists at the National Cancer Institute developed a cell line designated A549 that was derived from explanted cultures of human lung cancer tissue. The A549 cell line has been tested under the guidance of the United States Food and Drug Administration (FDA) so, under current Good Manufacturing Practices (GMP), these cells may be suitable for use in manufacturing constructs for use in clinical trials.

Device to guide oxygen over cells for photo-oxidation

Researchers at the NCI Laboratory for Cell Biology have invented a device to guide a stream of oxygen or carbon dioxide over a dish of cells during fluorescence microscopy. The invention includes the 3D printing software to create the device.  The device facilitates application of a steady source of oxygen or carbon dioxide to cells while operating a fluorescent microscope to oxidize fluorophores for subsequent visualization via electron microscopy. 

Device for Growing Mammalian Cells on EM Grids

Researchers at the NCI Center for Molecular Microscopy invented a device to hold transmission electron microscopy grids that allows adherent mammalian cells to be grown on it, as well as the 3D printing software to create the holder.  The TEM cell grid holder solves the difficulty of lifting the TEM grid out of a plate without bending or damaging the grid.  The holder can be reproduced in various sizes with 3D printing. 

Metastatic ovarian cancer mouse models and cell lines for preclinical studies

The high mortality rate from ovarian cancers can be attributed to late-stage diagnosis and lack of effective treatment. Despite enormous effort to develop better targeted therapies, platinum-based chemotherapy still remains the standard of care for ovarian cancer patients, and resistance occurs at a high rate. One of the rate limiting factors for translation of new drug discoveries into clinical treatments has been the lack of suitable preclinical cancer models with high predictive value.