A Device for Simultaneous and Rapid Diagnosis and Detection of Recent and Long Term HIV-1 Infection

CDC scientists have developed a device for simultaneous rapid diagnosis of HIV infection and for identification of recent HIV-1 infection. The device utilizes immunochromatographic or flow-through principles to detect HIV antibodies within clinical samples. This device may be used for diagnosis of HIV infection, as well as to distinguish between recent infection (6 months) and long-term infection (>1 year).

Compositions and Methods for Improved Lyme Disease Diagnosis

This CDC-developed technology entails novel compositions and methods related to the diagnosis of Lyme disease. Lyme disease, caused by the Borrelia burgdorferi bacterium, is the most common tick-borne infectious disease in the US and Europe. Diagnosis of Lyme disease is particularly challenging as symptoms often appear long after exposure. At present, the only FDA-approved diagnostic for Lyme disease involves patient blood tests for particular antibodies; these include an ELISA to measure patient antibody levels and a Western blot assay to detect antibodies specific to B.

Dengue Vaccines: Tools for Redirecting the Immune Response for Safe, Efficacious Dengue Vaccination

This CDC-developed invention relates to dengue vaccines that have been specifically developed for improved efficacy and directed immune response to avoid antibody-dependent enhancement (ADE) safety issues that, theoretically, may be associated with dengue vaccines and vaccinations. Dengue viral infection typically causes a debilitating but non-lethal illness in hosts.

Multivalent, Multiple-Antigenic-Peptides for Serological Detection of HIV-1 Groups -M, -N, -O, and HIV-2

This CDC-developed invention pertains to multivalent antigenic peptides (MAPs) that can be used in a variety of HIV/AIDS diagnostics. There are two types of HIV: HIV-1 and HIV-2. HIV-1 is subdivided into groups M, N, and O, while HIV-2 is subdivided into subtypes A and B. Within HIV -1 group M, several different subtypes and numerous forms of recombinant viruses exist. To detect all types, groups, and subtypes of HIV by serological methods, a mixture of antigens derived from different viral strains representing different HIV types and subtypes is needed.

Recombinant Sulfated HIV Envelope Protein and Methods for Making Protein

This technology comprises sulfated recombinant gp120 proteins and peptides. Also included are methods for producing sulfated recombinant gp120 proteins. The focus of this technology is on sulfation of two tyrosines in the V2 loop of the HIV major envelope glycoprotein, gp120, which increase the stability of gp120 and promote the synthesis of gp120 protein in its native "closed" conformation. Gp120 in its native form is highly sulfated; however, recombinant gp120 produced for vaccines or structural analyses typically display low levels of V2 tyrosine sulfation.

Novel In Vitro Granuloma Model for Studying Tuberculosis and Drug Efficacy

CDC researchers have developed an in vitro model system designed to simulate early-stage Mycobacterium tuberculosis infection and induced granuloma formation. This modeling platform can be used for studying tuberculosis pathogenicity, identifying phenotypically-interesting clinical isolates, studying early-stage host cytokine/chemokine responses, and in vitro candidate-drug screening.

Diagnostic Antigens for the Identification of Latent Tuberculosis Infection

CDC researchers have developed technology for sero-diagnosis of typically symptomless latent stage tuberculosis disease, posing a threat to individuals under immunosuppressive or anti-inflammatory therapies. Specifically, this diagnostic approach exploits M. tuberculosis secreted latency specific antigens, such as alpha-crystallin, in the blood or urine of patients.

Multiple Antigenic Peptide Assays for Detection of HIV and SIV Type Retroviruses

CDC scientists have developed multiple antigenic peptide immunoassays for the detection of human immunodeficiency virus (HIV) and/or simian immunodeficiency virus (SIV). HIV can be subdivided into two major types, HIV-1 and HIV-2, both of which are believed to have originated as result of zoonotic transmission. Humans are increasingly exposed to many different SIVs by wild primates. For example, human exposure to SIVs frequently occurs as a consequence of the bush meat hunting and butchering trade in Africa.

Methods of Retaining Methylation Pattern Information in Globally Amplified DNA

CDC researchers have developed a novel method that generates globally amplified DNA copies retaining parental methylation information; making accurate DNA-archiving for methylation studies much more feasible and cost-effective than undertaking such an endeavor with alternate technologies. This unique approach eliminates a significant bottleneck in the collection of methylation information in the genome(s) of an individual organism, hosts and pathogens.