Therapeutic, Bifunctional Janus Microparticles with Spatially Segregated Surface Proteins and Methods of Production

CDC researchers have developed a fabrication process to create bifunctional microparticles displaying two distinct proteins that are spatially segregated onto a single hemispheric surface. At present, there is no described way of producing biological microparticles with two distinct types of separated proteins. Bifunctional Janus particles generated by the CDC approach possess biologically relevant, native conformation proteins attached to a biologically unreactive and safe substrate.

Fluorescent Nanodiamonds as Fiducial Markers for Microscopy

The invention relates to fluorescent nanodiamonds (FNDs) and their uses as fiducial markers for microscopy. FNDs are bright fluorescent probes that do not blink or bleach and have broad fluorescence excitation and emission peaks. The fluorescence intensity can be readily controlled by the size of the FND, the number of fluorescent centers produced in the nanodiamonds, or in situ through the application of a weak magnetic field.

An Innovative Adapter for Expedited and Automated Thawing of viably Frozen Cells

This technology is a device and system for expediting the thawing frozen specimens (e.g., cryopreserved cells) contained in cryo-vials, offering a breakthrough solution for researchers seeking efficiency and precision in their workflows. The device is equipped with a small elongated tubular adaptor that suspends a cryo-vial of frozen cells over a centrifuge tube containing culture medium in an inverted position. With a focus on speed, efficiency and automation, the adaptor dramatically expedites the process of recovering viable cells from frozen specimens.

Vascular Anchoring Introducer Sheath for Interventional Cardiac Procedures

This technology includes a device and method for maintaining access to a location in the body while reducing or eliminating the potential for pulling an access device (i.e., catheter) back through an opening, such as a cardiac procedure. An introducer sheath includes a distal indented portion and a balloon, so that once placed in a desired location through tissue, the balloon can be inflated to anchor the sheath against retraction.

Free Breathing Motion Corrected Pixel-wise MRI Myocardial T1 Parameter Mapping for Clinical Cardiac Imaging

This technology includes a method for performing cardiac imaging without the need for the patient to hold their breath. Free breathing pixel-wise myocardial T1 parameter mapping includes performing a free-breathing scan of a cardiac region at a plurality of varying saturation recovery times to acquire a k-space dataset; generating an image dataset based on the k-space dataset; and performing a respiratory motion correction process on the image dataset.

Device for Closure of Transvascular or Transcameral Access Ports

This technology includes part of transcatheter aortic valve replacement and to enable non-surgical thoracic aortic aneurysm endograft repair. The invention enables a completely new way to access the arterial circulation to allow introduction of large devices, such as transcatheter aortic valve replacement, percutaneous left ventricular assist devices, and thoracic aortic endografts. It also can be used in most labeled and off-label applications of Amplatzer (AGA Medical, St Jude) nitinol occluder devices to occlude intracardiac holes and to allow non-surgical direct access to the heart.

Systems and Methods for Applying Pressure to the Heart for the Treatment of Tricuspid Valve Regurgitation

This technology includes structures and methods for cinching a band around the heart for treating conditions including tricuspid valve regurgitation (TR). When positioned appropriately along the atrioventricular groove, the band is tightened around the heart which narrows the tricuspid annulus and relieves TR.

Helical Guidewires and Related Systems for Transcatheter Heart Valve Procedures

This technology includes a guidewire purpose-built for delivery of bulky transcatheter heart valves (THV). Conventional THV guidewires are rigid and have a distal tip shaped like a pigtail to prevent apical ventricular perforation. This invention is a 3-dimensional helical or antihelical curve that can protect against apical perforation, possibly better, and that allows subtle 3-mensional deflection to aid the operator in achieving coaxiality or overcoming delivery obstacles such as calcific spicules.

A Method to Guide Protocol Development for Magnetic Resonance Thermometry

This technology includes tools to guide optimization of thermometry imaging/post-processing protocols. Proton Resonance Frequency (PRF) thermometry is a widely used Magnetic Resonance Imaging (MRI) based technique to monitor changes in tissue temperature in response to thermal therapy. The use of PRF thermometry with thermal therapy procedures is indispensable to ensure delivery of desired thermal dose to the target tissue, and to minimize unintended damage to the normal tissue.

A Pre-emphasis Technique Based on the Temperature-dependent Gradient System Behavior for Trajectory Correction in MR Imaging

This technology includes the determination of temperature dependent temporal deviations of the real from the intended gradient waveforms and k-space trajectories during MRI image acquisition, and the use of appropriate temperature dependent pre-compensations to avoid or reduce the image distortion caused by these temporal deviations on the gradient waveforms and k-space trajectories, which will improve imaging quality.