Auscultatory Training System and Telemedicine Tool with Accurate Reproduction of Physiological Sounds

This CDC developed auscultatory training apparatus includes a database of prerecorded physiological sounds (e.g., lung, bowel, or heart sounds) stored on a computer for playback. Current teaching tools, which utilize previously recorded sounds, suffer from the disadvantage that playback environments cause considerable distortion and errors in sound reproduction. For example, to those trainees using such systems, the reproduced respiratory sounds do not “sound” as if they are being generated by a live patient.

Air Quality Assurance: A Monitor for Continuous, Simultaneous Analysis of Atmospheric or Aerosolized Particulate Mixtures

This technology pertains to monitors for measuring the mass concentration of ambient particulate matter in an atmosphere containing both larger/coarser (e.g., respirable dust) and smaller/finer (sub-micrometer particles such as diesel particulate matter - DPM) particulate mixtures. The monitoring device can be configured for operation with a controller unit adapted to ionization sensor and/or light-scattering modules. The controller translates the sensor output signal into a quantifiable value, determining mass concentration of particulate matter within the ionization chamber.

Cable-line Safety System: Electro/hydraulic Emergency Stop Device for a Winch, Drum or Capstan

This CDC-developed invention entails a system of electrical and hydraulic circuits used to stop a rotating winch in an emergency. Amongst other locations, one stop switch can be positioned on a capstan winch horn. This location makes it available to a victim entangled in rope being retrieved on a gypsy drum. As designed, the stop circuit could be used with an electrically, hydraulically or pneumatically operated winch. A variant of this safety system has been successfully tested on a purse seining fishing vessel in Alaskan waters.

Mining Safety: Personal Dust Monitor Filters for Accurate, Quantifiable Spectrometric Analysis and Assessment of Worker Exposure Levels

This CDC-developed invention pertains to a novel dust monitor filter that is specially constructed of organic materials for spectrometric analysis, ultimately allowing for detection and accurate quantification of a particular chosen analyte (e.g., crystalline silica/quartz dust that may lead to silicosis).

Computer Controlled Aerosol Generator with Multi-Walled Carbon Nanotube Inhalation Testing Capabilities

This invention pertains to a CDC developed sonic aerosol generator that provides a controllable, stable concentration of particulate aerosol over a long period of time for aerosol exposure studies. Specifically, in situ testing data indicate uniform aerosol stability can be maintainable for greater than 30 hours at concentrations of 15 mg/m3 or more. Additionally, the technology was specifically developed for, and validated in, animal studies assessing exposure to airborne multi-walled carbon nanotubes (MWCNT).

Silica Exposure Safety: Mini-baghouse Systems and Methods for Controlling Particulate Release from Large Sand Transfer Equipment

CDC/NIOSH scientists have developed an effective point-source control for silica-containing dusts that can be generated from machinery on sites where hydraulic fracturing is occurring. The CDC/NIOSH mini-baghouse retrofit assembly is a bolt-on control designed to contain silica-containing respirable dusts generated during refill operations of sand movers during hydraulic fracturing.

Local Positioning System for Position-Time-Condition Correlation, Data-logging and Analysis

This CDC-developed technology describes an automated system for monitoring worker hazard exposures by recording data about where and when hazards occur in a workplace or other environment. This allows the hazards to be avoided and harmful exposures and risks reduced. This field-tested technology consists of an integrated, hand-held electronics instrument and software system that will precisely correlate multiple exposure levels with position coordinates of the user and features real-time data acquisition.

A Device for Simultaneous and Rapid Diagnosis and Detection of Recent and Long Term HIV-1 Infection

CDC scientists have developed a device for simultaneous rapid diagnosis of HIV infection and for identification of recent HIV-1 infection. The device utilizes immunochromatographic or flow-through principles to detect HIV antibodies within clinical samples. This device may be used for diagnosis of HIV infection, as well as to distinguish between recent infection (6 months) and long-term infection (>1 year).

Focused Electrostatic Collection of Aerosol Particles for Chemical Analysis by Spectroscopic Techniques

This CDC-developed technology is an aerosol preconcentration unit (APU) designed for use with spectroscopic detection techniques, including emission, Raman, or infrared spectroscopies. Most existing pulsed microplasma techniques, such as laser-induced breakdown, for aerosols rely mainly on filter-based collection and suffer from poor accuracy, precision, and detection limits and require long sample collection times.

Improved Acoustic Plethysmograph System for Noninvasive Measurement of Pulmonary Function

CDC researchers have developed a novel acoustic whole body plethysmograph (AWBP) that allows measurement of tidal volume in lab animals, independent of gas compression in the lung. This system provides particular advantages over the traditional whole body plethysmograph (WBP) when measuring model animals with increased gas compression due to increased airway resistance or increased acceleration in the breathing pattern.