Expanded Claims for Transcatheter Coronary Sinus Mitral Valve Annuloplasty Procedure and Coronary Artery and Myocardial Protection

This technology includes a novel transcatheter repair for functional mitral valve regurgitation, called mitral cerclage annuloplasty. This includes coronary artery protection for mitral cerclage annuloplasty against inside-out compression from subsequent transcatheter valve-in-ring mitral valve implantation, wherein the ring is created by the cerclage annuloplasty. Cerclage annuloplasty is to create a semi-rigid ring at the level of the mitral annulus.

Segmented Metallic MRI Guidewires Using Stiffness-matched Nonconductive Connectors for Catheterization Procedures

This technology includes a metallic guidewire that is suitable for MRI catheterization, because it is mechanically long but electrically consists of short conductive segments that cannot resonate during MRI. The invention consists of stiffness-matched non-conductive connectors or connections that are used along with short metallic segments. The embodiment reduced to practice has torquability and flexibility comparable to marketed metallic guidewires, yet is free from MRI heating.

Endo-cameral Closure Device for Structural Heart Defects and Blood Vessel Repair

This technology includes a device to close a hole in the wall of a large blood vessel or cardiac chamber from the inside out, delivered over a guidewire and through a catheter or sheath. First, the proximal portion deploys within the vessel or chamber and is advanced over a guidewire to oppose the wall and seal the hole. Second, the distal portion self-assembles outside the vessel or chamber upon withdrawal of the guidewire. Deployment of the distal portion anchors the device securely in place.

Three-dimensional Fluorescence Polarization Excitation via Multiview Imaging

This technology includes a method that extends fluorescence polarization imaging so that the dipole moment of a fluorescent dye may be excited regardless of its 3D orientation. By exciting the dipole from multiple directions, we ensure that excitation may occur even if the dipole is unfavorably oriented along the axial (propagation) axis. If the dye can be rigidly attached to the structure of interest, our method also enables the 3D orientation of the structure to be estimated accurately.

Producing Isotropic Super-Resolution Images from Line Scanning Confocal Microscopy

This technology includes a microscopy technique that produces super-resolution images from diffraction-limited images obtained from a line scanning confocal microscope. First, the operation of the confocal microscope is modified so that images with sparse line excitation are recorded. Second, these images are processed to increase resolution in one dimension. Third, by taking a series of such super-resolved images from a given sample type, a neural network may be trained to produce images with 1D super-resolution from new diffraction-limited images.

Non-Contact Total Emission Detection Methods for Multiphoton Microscopy: Improved Image Fidelity and Biological Sample Analysis

The technology offered for licensing and for further development is in the field of multiphoton microscopy (MPM). More specifically, the invention pertains to optical designs that can enhance and extend the capabilities of MPM in spectral imaging of biological samples. The unique design of the light collection and the detection optics maximizes the collection of emitted light, thus increasing the signal and hence the signal-to-noise ratio (SNR).

Device for Selective Partitioning of Frozen Cellular Products

Cryopreservation using liquid nitrogen frozen polyvinyl bags allows for storing cellular materials for extended periods while maintaining their activity and viability. Such bags are commonly used in the clinic to store blood products including blood cells, plasma, hematopoietic stem cells, umbilical cord blood for future uses including transplantation. These materials, typically obtained in limited quantities, may be of great therapeutic value, as is the case of stem cells or cord blood derived cells which can be used to potentially treat a number of diseases.

Intranasal Dry Powder Inhaler for Improved Delivery of Vaccines and Therapeutics

This Intranasal Dry Powder Inhaler (DPI), developed with Creare, Inc., allows low-cost delivery of powder vaccines. Nasal delivery has numerous advantages compared to traditional injected vaccines, including: 1) safe, needle-less administration by minimally-trained staff or patient; 2) better protection due to mucosal and cross-protection; and 3) decreased biohazard waste.

Intranasal Nebulizer with Disposable Drug Cartridge for Improved Delivery of Vaccines and Therapeutics

Intranasal delivery is a simple, inexpensive and needle-free route for administration of vaccines and therapeutics. This intranasal delivery technology, developed with Creare LLC., includes low-cost, disposable drug cartridges (DDCs) that mate with a durable hand-held device. The rechargeable-battery-powered device transmits ultrasonic energy to the DDC to aerosolize the drug and is capable of performing for eight hours at 120 vaccinations per hour. Potential applications for this platform technology include intranasal vaccination (e.g.