SIRT2 Inhibitors as Novel Therapeutics for Myocardial Infarction and Ischemic Stroke and to Prevent Necrosis

Sirtuin 2 (SIRT2) inhibitors to reduce necrosis and, thereby, as novel therapeutics to treat ischemic stroke and myocardial infarction. Accumulating evidence indicates that programmed necrosis plays a critical role in cell death during ischemia-reperfusion. NIH investigators have shown that the NAD-dependent deacetylase SIRT2 binds constitutively to receptor-interacting protein 3 (RIP3) and that deletion or knockdown of SIRT2 prevents formation of the RIP1-RIP3 complex in mice.

Generation of Artificial Mutation Controls for Diagnostic Testing

This technology relates to a method of generating artificial compositions that can be used as positive controls in a genetic testing assay, such as a diagnostic assay for a particular genetic disease. Such controls can be used to confirm the presence or absence of a particular genetic mutation. The lack of easily accessible, validated mutant controls has proven to be a major obstacle to the advancement of clinical molecular genetic testing, validation, quality control (QC), quality assurance (QA), and required proficiency testing.

Automated Microscopic Image Acquisition, Compositing and Display Software Developed for Applied Microscopy/Cytology Training and Analysis

Micro-Screen is a CDC developed software program designed to capture images and archive and display a compiled image(s) from a portion of a microscope slide in real time. This program allows for the re-creation of larger images that are constructed from individual microscopic fields captured in up to five focal planes and two magnifications. This program may be especially useful for the creation of data archives for diagnostic and teaching purposes and for tracking histological changes during disease progression.

Method to Detect and Quantify In Vivo Mitophagy

This technology includes a transgenic reporter mouse that expresses a fluorescent protein called mt-Keima, to be used to detect and quantify in vivo mitophagy. This fluorescent protein was originally described by a group in Japan and shown to be able to measure both the general process of autophagy and mitophagy. We extended these results by creating a living animal so that we could get a measurement for in vivo mitophagy. Our results demonstrate that our mt-Keima mouse allows for a straightforward and practical way to quantify mitophagy in vivo.

Methods To Regulate Metabolism For Treatment Of Neural Injuries and Neurodegeneration

Axonal injury and subsequent neuronal death underpin the pathology of many neurological disorders from acute neural injuries (motor vehicle crashes, combat related injuries, traumatic brain injuries) to neurological diseases (multiple sclerosis, glaucoma). In the central nervous system (CNS), microglia help respond to CNS injuries by mediating the immune response and increasing inflammation at the site of injury. 

Establishment of Induced Pluripotent Stem Cells (iPSC) from the Thirteen-lined Ground Squirrel

The limited choice in cell types available for in vitro studies has become an obstacle in hibernation research. 

Researchers at the National Eye Institute for the first time have successfully established iPSC line(s) from a mammalian hibernator, which can be potentially used to generate various cell types and tissue models for in-depth mechanistic studies of hibernation and coldness tolerance in vitro. 

A Preclinical Orthotopic Model for Glioblastoma Multiforme that Represents Key Pathways Aberrant in Human Brain Cancer

Current therapies for glioblastoma multiforme (GBM), the highest grade malignant brain tumor, are mostly ineffective, and better preclinical model systems are needed to increase the successful translation of drug discovery efforts into the clinic. Scientists at the National Cancer Institute (NCI) have developed and characterized an orthotopic genetically engineered mouse (GEM)-derived model of GBM that closely recapitulates various human GBM subtypes and is useful for preclinical evaluation of candidate therapeutics.

Fluorinated MU-Opioid Receptor Agonists

Summary: 
Investigators at the National Institute on Drug Abuse seek co-development partners and/or licensees for collection of mu opioid receptor (MOR) agonists as alternatives for existing compounds.

Description of Technology: 
Although existing opioids are excellent analgesics and useful as positron emission tomography (PET) radiotracers, they come with debilitating side effects. These include addiction, respiratory distress, hyperalgesia, and constipation. Therefore, there is a need for alternatives with lower adverse effects.