Magnetic Resonance Specimen Evaluation Using Multiple Pulse Field Gradient Sequences

Researchers at the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) developed an MRI-method that is based on the acquisition of multiple pulsed field gradient (m-PFG) rather than single-pulsed field gradient (s-PFG) MRI sequences. In particular, double PFG (dPFG) MRI sequences offer higher sensitivity and greater robustness, as they are more sensitive to the effects of “restriction;” i.e., to water trapped within the axon’s intracellular space, and thus to the diameter of the axons.

MRI-Based Method for Characterizing Axonal Microstructure in Traumatic Brain Injury

Neurites of the central nervous system can be conceptualized as cylindrical pores with finite lengths and radii. In response to physical trauma, axons may assume a “beaded” morphology which alters their ability to conduct electrical impulses, impairing brain function. These microstructural changes are thought to underlie some of the cognitive defects observed in patients with traumatic brain injury (TBI). Current methods for characterizing traumatic brain injury (TBI) cannot provide microstructural detail on the 3-dimensional shape of axonal segments.

Systems and Devices for Training and Imaging an Awake Test Animal

Typical MRI imaging sessions can last over 45 minutes and depend on the subject remaining still during the procedure for accurate imaging. In particular, animals being imaged, such as rodents (rats) in an awakened state, are not readily compliant with the restricted movement required when being imaged. Current techniques for imaging awake animals focus on training them with full body restraints and head fixation using a bite bar and/or ear bars.

Methods of making and using dopamine receptor selective antagonists/partial agonists

Dopamine is a major neurotransmitter in the central nervous system and among other functions is directly related to the rewarding effects of drugs of abuse.  Dopamine signaling is mediated by D1, D2, D3, D4 and D5 receptors.  The dopamine D3 receptor is a known target to treat a variety of neuropsychiatric disorders, including substance use disorders (e.g. cocaine and opioid), schizophrenia and depression.

Therapeutic Management of Menkes Disease and Related Copper Transport Disorders

The only currently available treatment for Menkes disease, subcutaneous copper histidinate injections, is successful only in patients with ATP7A gene mutations that do not completely corrupt ATP7A copper transport function (estimated 20-25% of affected patients) and when started at a very early age (first month of life). The combination of viral gene therapy with copper injections provides working copies of the ATP7A copper transporter into the brain, together with a source of the substrate (copper)  needed for proper brain growth and clinical neurodevelopment.

Methods of Synthesis of the Ketamine Analogs (2R, 6R)-kydroxynorketamine and (2S, 6S)-hydroxynorketamine for the Treatment of Pain and other Anxiety-related Disorders

This technology includes a method for synthesizing the ketamine analogs (2R,6R)-hydroxynorketamine (HNK) and (2S,6S)-hydroxynorketamine that may be useful for the treatment of pain, depression, anxiety, and related disorders. The drug ketamine was first used as an anesthetic but was found to be an effective treatment in a range of conditions, including paint, treatment-resistant bipolar depression, and other anxiety-related disorders. However, the routine use of ketamine is hindered by unwanted side effects, including the potential for abuse.

Use of the Ketamine Metabolite (R,6R)-hydroxynorketamine in Depression

This technology includes the identification and use of a ketamine metabolite, (2R,6R)-2-amino-2-(2-chlorophenyl)-6-hydroxycyclohexanone (HNK), for the treatment of depression. Ketamine is an NMDA receptor antagonist that exerts a rapid and sustained antidepressant and anti-suicidal effect. However, even low doses of ketamine has addictive and psychomimetic effects. The downstream metabolite, (2R,6R)-HNK, does not inhibit the NMDA receptor but recapitulates the antidepressant and anti-suicidal effect of ketamine.

Fluorescent Primer(s) Creation for Nucleic Acid Detection and Amplification

CDC researchers have developed technology that consists of a simple and inexpensive technique for creating fluorescent labeled primers for nucleic acid amplification. Fluorescent chemical-labeled probes and primers are extensively used in clinical and research laboratories for rapid, real-time detection and identification of microbes and genetic sequences. During nucleic acid amplification, the "UniFluor" primer is incorporated into newly synthesized double stranded DNA.

Photoinduced Electron Transfer Fluorescent Primer for Nucleic Acid Amplification

CDC scientists have developed a rapid and cost-efficient method for generating fluorescently labeled primers for PCR and real-time PCR. At present, fluorescent primers are useful for detecting and identifying microbes and specific nucleic acid sequences, amplifying nucleic acids for pyro-sequencing, determining the levels of gene expression, and many other uses. However, problems exist with current techniques used to create fluorescent primers. For one, labeling is not one hundred percent efficient, leading to inaccurate results.