Use of Neurotrophic Factor-alpha1/Carboxypeptidase E (CPE) to Treat Alzheimer Disease

There is no known cure for Alzheimer’s disease, a brain disorder that severely affects memory, thinking, learning, and organizing skills. It eventually decreases a person’s ability to carry out simple, daily activities. It is predicted that over 14 million Americans will develop Alzheimer’s without effective treatment options. Mild cognitive impairment (MCI) is a stage prior to Alzheimer’s when memory problems become noticeable. A patient’s ability to function and live independently remain intact as the brain compensates for disease-related changes.

SMAD3 Reporter Mouse for Assessing TGF-ß/Activin Pathway Activation

The Transforming Growth Factor Beta (TGF-ß) ligands (i.e., TGF-ß1, -ß2, -ß3) are key regulatory proteins in animal physiology. Disruption of normal TGF-ß signaling is associated with many diseases from cancer to fibrosis. In mice and humans, TGF-ß activates TGF-ß receptors (e.g., TGFBR1), which activates SMAD proteins that alter gene expression and contribute to tumorigenesis.  Reliable animal models are essential for the study of TGF-ß signaling.

Automated Digital Pathology Device for High-Throughput Demand

Computer and imaging technologies led to the development of digital pathology and the capture and storage of pathological specimens as digitally formatted images. The use of artificial intelligence (AI) in digital pathology, such as in three-dimensional (3D) reconstruction, requires analyses of high volumes of data. This resulted in increased demands for processing and acquisition of digital images of pathology samples. Increased usage cannot be met by the time-consuming, manual, and laborious methods currently used.

Size-dependent brain distribution of macromolecular drug delivery platform

The blood brain barrier (BBB) is a specialized endothelium that prevents the uptake of substances from the systemic circulation into the central nervous system. This barrier, while protecting the sensitive physiological environment of the brain, is also a major impediment in administering therapeutics that need to pass through the BBB. A drug delivery platform that could deliver therapeutic agents directly to the brain is needed, and could have wide ranging significance in a variety of psychiatric, oncology, infectious, and neurodegenerative diseases.

Margaric Acid Decreases PIEZO2 Mediated Pain

Some existing therapies for treatment of pain are administered systematically and have significant side effects, such as addiction and drowsiness. Alternative therapy that does not impair normal touch function could be used to treat pain caused by mechanical injury or chronic inflammation. Administration of margaric acid was shown to ameliorate pain in mouse models of pain. In vitro data shows that margaric acid counteracts PIEZO2 (Piezo-type mechanosensitive ion channel component 2) potentiation evoked by bradykinin (i.e.

Small Molecule Inhibitors of Histone Demethylases for Treating Rhabdomyosarcoma (RMS) and Other Cancers

Rhabdomyosarcoma (RMS) is the most common type of soft tissue sarcoma in children and makes up 3% of all childhood cancers. Aveloar Rhabdomyosarcoma is the most aggressive subtype and is primarily established through a chromosomal translocation resulting in the fusion protein PAX3-FOXO1. Despite aggressive therapy, the 5-year survival rate for patients with high risk or recurrent Fusion Positive RMS (FP-RMS) is low (~30% and ~17%, respectively). Therefore, new therapies targeting the PAX3-FOXO1 oncogenic driver are urgently needed.  

Device for Simulating Explosive Blast and Imaging Biological Specimens

Traumatic brain injury (TBI) is a major health problem.  Between 3.2 and 5.3 million people live with long-term disabilities resulting from TBI, and thus, contribute to the need to develop therapies that treat TBI-induced cellular damage. Researchers at the National Institute of Child Health and Human Development (NICHD) have developed a device that simulates the pressure waves resulting from explosions.

Isotropic Generalized Diffusion Tensor MRI

Scientists at the Eunice Kennedy Shriver National Institute for Child Health and Human Development (NICHD) have developed a method implemented as pulse sequences and software to be used with magnetic resonance imaging (MRI) scanners and systems. This technology is available for licensing and commercial development. The method allows for measuring and mapping features of the bulk or average apparent diffusion coefficient (ADC) of water in tissue – aiding in stroke diagnosis and cancer therapy assessment.