Systems and Devices for Training and Imaging an Awake Test Animal

Typical MRI imaging sessions can last over 45 minutes and depend on the subject remaining still during the procedure for accurate imaging. In particular, animals being imaged, such as rodents (rats) in an awakened state, are not readily compliant with the restricted movement required when being imaged. Current techniques for imaging awake animals focus on training them with full body restraints and head fixation using a bite bar and/or ear bars.

Novel Biased Potent Opioid-Like Agonists as Improved Medications to Treat Chronic and Acute Pain

There are no analgesics to ameliorate chronic pain without adverse side-effects (e.g., respiratory depression, gastrointestinal effects, tolerance, dependence), thus forcing patients into a difficult choice of negative impacts on quality of life. Most of the analgesics used for chronic and acute pain are drugs such as oxycodone, morphine, oxymorphone, and codeine. All of these opioids have been subject to misuse; prescription drug abuse is a severe problem worldwide, causing high mortality and greatly increased emergency room visits.

A Protocol to Enhance Therapeutic Effects of Transcranial Magnetic Stimulation and the Methods to Realize It

Summary: 

The National Institute on Drug Abuse (NIDA) seeks research co-development partners and/or licensees for a high-powered electronic device and coil that delivers Transcranial Magnetic Stimulation (TMS) pulses as well as the software that controls the device for treating treatment resistant depression, substance use disorders and other CNS disorders.

Description of Technology: 

High-Resolution and Artifact-Free Measurement and Visualization of Tissue Strain by Processing MRI Using a Deep Learning Approach

This technology includes a system for automatic artifact-free measurement and visualization of tissue strain by MRI at native resolution. The investigation of regional soft tissue mechanical strain can serve as a unique indicator for different related disorders. For example, measurement of myocardial tissue during contraction can help calculate, track, and assess cardiac stress. Currently, methods such as tagging MRI (tMRI) are used for imaging soft tissue deformation. Despite being well validated, methods such as tMRI suffer from low spatial and temporal resolution.

Methods for Amelioration and Treatment of Pathogen-associated Inflammatory Response

This CDC invention provides methods for preventing or treating inflammatory response-linked, infection induced pathologies, which are mediated by endogenous substance P. Substance P is a naturally-occurring and major pro-inflammatory neuromediator or neuromodulator, and elevated levels of substance P have been implicated in numerous inflammation-associated diseases. More specifically, this technology entails administration of anti-substance P antibodies or anti-substance P antibody fragments to a subject in need, thereby inhibiting the activity of endogenous substance P.

Human iPSC-Derived Mesodermal Precursor Cells and Differentiated Cells

Cells, cell culture methods, and cell culture media compositions useful for producing and maintaining iPSC-derived cell lines that are of higher purity and maintain cell type integrity better than current iPSC-derived cell lines are disclosed. Human induced pluripotent stem cells (hiPSCs) can be generated by reprogramming somatic cells by the expression of four transcription factors. The hiPSCs exhibit similar properties to human embryonic stem cells, including the ability to self-renew and differentiate into all three embryonic germ layers: ectoderm, endoderm, or mesoderm.

A Rapid Ultrasensitive Assay for Detecting Prions Based on the Seeded Polymerization of Recombinant Normal Prion Protein (rPrP-sen)

Prion diseases are neurodegenerative diseases of great public concern as humans may either develop disease spontaneously or, more rarely, due to mutations in their prion protein gene or exposures to external sources of infection. Prion disease is caused by the accumulation in the nervous system of abnormal aggregates of prion protein. This technology enables rapid, economical, and ultrasensitive detection of disease-associated forms of prion protein.

A Highly Efficient Nociceptor Differentiation Protocol for Human Pluripotent Stem Cells

This technology includes a robust and highly efficient protocol that differentiates human pluripotent stem cells (hPSCs) exclusively into nociceptors (also called sensory neurons) under chemically defined conditions. The use of hPSCs, including hESCs and iPSCs, holds great promise for drug screening, disease modeling, toxicology, and regenerative medicine. However, efficient and highly reproducible protocols have not been developed for most cell types that are relevant and urgently needed for translational applications.

A Highly Efficient Astrocyte Differentiation Protocol for Human Pluripotent Stem Cells

This technology includes a robust and highly efficient protocol that differentiates induced pluripotent stem cells (iPSCs) exclusively into nociceptors (also called sensory neurons) under chemically defined conditions. The use of hPSCs, including hESCs and iPSCs, holds great promise for disease modeling, drug discovery, and cell therapy. However, efficient and highly reproducible protocols have not been developed for most cell types that are relevant and urgently needed for translational applications.