Monoclonal Antibodies to HIV-1 Vpr

Available for licensing are monoclonal antibodies against HIV-1 viral protein R (Vpr) and the respective hybridoma cell lines expressing the same. The antibodies provide a means for detecting HIV-1 Vpr. Currently, the mechanism of HIV pathogenesis believed to involve viral replication inside immune cells and other cells. At present, there are no clinical assays for detecting HIV-1 Vpr. Vpr circulates at detectable levels in the blood and is likely derived from degraded virions or released from infected cells. Vpr facilitates viral replication and disrupt normal cell function.

Modified Bacterial Strain for Otitis Media Vaccine

This invention relates to a strain of Moraxella catarrhalis containing a gene mutation that prevents endotoxic lipooligosaccharide (LOS) synthesis and potential use of the mutant for developing novel vaccines against the pathogen, for which there is currently no licensed vaccine. M. catarrhalis is one of the causative agents of otitis media (middle ear infection), sinusitis, and lung infections. The mutant is defective in the lpxA gene, whose enzyme product is relevant in lipid A biosynthesis (lipid A is part of the LOS).

Anti-Plasmodium Compositions and Methods of Use

This invention describes methods and compositions of peptides that inhibit the binding of Plasmodium falciparum (P. falciparum) to erythrocytes. Malarial parasites enter the red blood cell through several erythrocyte receptors, each being specific for a given species of Plasmodia. For P. falciparum, the erythrocyte binding antigen (EBA-175) is the ligand of the plasmodia merozoites that interacts with the receptor glycophorin A on the surface of red blood cells.

Human T Cell Line Chronically Infected With HIV

A stable line of human T cells (ACH-2) was developed in which cells infected chronically with the AIDS virus (HIV) remained nonproductive prior to exposure to phorbol esters or human cytokines. This situation mimics the latent state of HIV and the development of AIDS in humans and indicates that the full-blown disease may be triggered by cellular-derived substances (e.g., cytokines). This is the first description of such a cell line.

Attenuated Human Parainfluenza Virus (PIV) for Use as Live, Attenuated Vaccines and as Vector Vaccines

The identified technologies describe self-replicating infectious recombinant paramyxoviruses with one or more attenuating mutations, such as a separate variant polynucleotide encoding a P protein and a separate monocistronic polynucleotide encoding a V protein, or at least one temperature sensitive mutation and one non-temperature sensitive mutation. Compositions and methods for recovering, making and using the infectious, recombinant paramyxoviruses as described are also included (e.g. recombinant human parainfluenza virus type 2 (HPIV2)).

Infectious Clone of Human Parvovirus B19 and Methods of Use

This technology described in this patent application relates the first reported infectious human parvovirus B19 clone, methods of cloning the parvovirus B19 genome as well as other viral genomes that have secondary DNA structures that are unstable in bacterial cells. The infectious clone and methods of producing the same would be useful in producing infectious virus, which can in turn be used, among other things, to identify and develop therapeutic agents for treatment and/or prevention of human parvovirus B19 infections. The infectious parvovirus B19 clone is also available for licensing.

Method of Diagnosing Multidrug Resistant Tuberculosis

The invention can be used to develop tests that are much more rapid than conventional tests for determining drug resistance. It relates to the discovery that a putative gene of Mycobacterium tuberculosis (MTb) with no previously identified function is responsible for the ability of the bacteria to activate a class of second line thioamide drugs used for MTb infections. The gene, termed "etaA", codes for the synthesis of a monooxygenase, the enzyme responsible for the oxidative activation of the drugs.

Recombinant MVA Viruses Expressing Clade A/G and Clade B Modified HIV Env, Gag and Pol Genes Useful for HIV Vaccine Development

The current technology relates to the construction, characterization and immunogenicity of modified vaccinia Ankara (MVA) recombinant viruses. The MVA double recombinant viruses express modified/truncated HIV-1 Env and mutated HIV Gag Pol under the control of vaccinia virus early/late promoters. This technology describes the MVA double recombinant viruses made by homologous recombination of single MVA recombinants, one expressing Env and one expressing Gag Pol. These single MVA recombinants are made using a transiently expressed GFP marker that is deleted in the final viruses.

Transmission-Blocking Vaccine Against Malaria (1)

A transmission blocking vaccine developed against malaria contains a recombinant virus, which encodes a unique portion of the sexual stage surface antigen of Plasmodium falciparum (referred to as Pfs25), or the Pfs25 protein purified from infected host cells. Mice inoculated with the recombinant virus developed antibodies capable of blocking transmission of the virus. None of the monoclonal antibodies known to block transmission recognize the reduced Pfs25 antigen. This vaccine, which induces high, long-lasting titers at low cost, can be useful for controlling malaria.